• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar

Bài Tập Toán Lý Hóa Sinh Tiếng Anh

Tập hợp bài tập môn Toán, Lý, Hóa, Sinh, Tiếng Anh, Sử, Địa, GDCD, Văn Phổ thông

  • Môn Toán
  • Môn Lý
  • Môn Hóa
  • Môn Sinh
  • Môn Anh
  • Môn Văn
  • Môn Sử
  • Môn Địa
  • Môn GDCD
  • Môn Công nghệ
  • Môn Tin học

Chứng minh với mọi $x,y,z$ không âm ta luôn có:  $xyz \geq (x+y-z)(x+z-y)(y+z-x)       (1)$

19/11/2019 by Baitap.net

                                     Giải
 Để ý: Với $x,y,z$ không âm thì trong ba số $a=(y+z-x), b=(x+z-y), c=(x+y-z)$ không thể có quá một số âm
Giả sử có hai số âm, do tính bình đẳng của $x,y,z$ giả sử $\begin{cases}x+y-zCộng vế theo vế ta có: $2x+ Nếu trong ba số $a,b,c$ có một số âm thì $(1)$ đúng ( do $xyz \geq 0\geq abc$)   $(2)$
+ Nếu cả ba số đều dương thì ta có $x^2 \geq x^2-(y-z)^2=(x+y-z)(x+z-y)>0$
Do vậy,nhân vế theo vế có $\Leftrightarrow  (xyz)^2 \geq (x+y+z)^2(x+z-y)^2(y+z-x)^2$
Từ $(2),(3)$ suy ra $(1)$ được chứng minh  

Câu trắc nghiệm liên quan:

  1. Cho $a,b,c \geq 1.$Hãy chứng minh:$1/\frac{1}{1+a^{2}}+\frac{1}{1+b^{2}}\geq \frac{2}{1+ab}$$2/\frac{1}{1+a^{3}}+\frac{1}{1+b^{3}}+\frac{1}{1+c^{3}}\geq \frac{3}{1+abc} $(Đây là dạng bất đẳng thức JenSen)
  2. Cho $ a,b,c>0$. Chứng minh a) Nếu $a>b$ thì $\frac{a}{b}>\frac{a+c}{b+c} $                          b) Nếu $ a
  3. Cho ba số dương $a,b,c$. Chứng minh rằng:   $\frac{a+b}{c}+\frac{b+c}{a}+\frac{a+c}{b}\geq 6$
  4. Chứng minh rằng:   $\sin \frac{5\pi}{12}+\sin \frac{\pi}{12}>1$
  5. Cho $a, b>0$. Chứng minh:a) $\frac{a}{b}+\frac{b}{a}\geq 2           (1)$ Dấu = chỉ xảy ra khi $a=b$.b) $\frac{1}{a}+\frac{1}{b}\geq \frac{4}{a+b}      (2)$ Dấu = chỉ xảy ra khi $a=b$.
  6. $1) $Chứng minh: $\forall a,\,b\, > 0;\,a,b \ne 1$ ta có $\left| {{{\log }_a}b + {{\log }_b}a} \right| \ge 2$$2)$Chứng minh:$\frac{1}{{{{\log }_2}\pi }} + \frac{1}{{{{\log }_{\frac{9}{2}}}\pi }} < 2$
  7. $1)$ Chứng minh: ${\log _{1999}}2000 > {\log _{2000}}2001$$2)$ Tổng quát $\forall n > 1 $. Chứng minh : ${\log _n}\left( {n + 1} \right) > {\log _{n + 1}}\left( {n + 2} \right)$
  8. Chứng minh với mọi $x,y,z$:a) $|x+y+z|\leq|x|+|y|+|z|                     b)|x-z|\leq |x-y|+|y-z|$
  9. Cho $a+b=2$.Hãy chứng minh:$1/ a^{2}+ b^{2} \geq 2$   $2/ a^{4}+ b^{4} \geq 2$ 

Filed Under: Bất đẳng thức Tagged With: Bất đẳng thức cơ bản

Reader Interactions

Primary Sidebar




Bài viết mới

  • Cho $a,b,c \geq 1.$Hãy chứng minh:$1/\frac{1}{1+a^{2}}+\frac{1}{1+b^{2}}\geq \frac{2}{1+ab}$$2/\frac{1}{1+a^{3}}+\frac{1}{1+b^{3}}+\frac{1}{1+c^{3}}\geq \frac{3}{1+abc} $(Đây là dạng bất đẳng thức JenSen) 19/11/2019
  • Cho $ a,b,c>0$. Chứng minh a) Nếu $a>b$ thì $\frac{a}{b}>\frac{a+c}{b+c} $                          b) Nếu $ a 19/11/2019
  • Cho ba số dương $a,b,c$. Chứng minh rằng:   $\frac{a+b}{c}+\frac{b+c}{a}+\frac{a+c}{b}\geq 6$ 19/11/2019
  • Chứng minh rằng:   $\sin \frac{5\pi}{12}+\sin \frac{\pi}{12}>1$ 19/11/2019
  • Cho $a, b>0$. Chứng minh:a) $\frac{a}{b}+\frac{b}{a}\geq 2           (1)$ Dấu = chỉ xảy ra khi $a=b$.b) $\frac{1}{a}+\frac{1}{b}\geq \frac{4}{a+b}      (2)$ Dấu = chỉ xảy ra khi $a=b$. 19/11/2019

Baitap.net (c) 2019 - Giải Bài Tập Toán Lý Hóa Sinh Tiếng Anh và các môn khác
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Bảo mật - Học Toán - Học Trắc nghiệm - Ebook Toán - Học Giải - Trắc nghiệm Toán