• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar

Bài Tập Toán Lý Hóa Sinh Tiếng Anh

Tập hợp bài tập môn Toán, Lý, Hóa, Sinh, Tiếng Anh, Sử, Địa, GDCD, Văn Phổ thông

  • Môn Toán
  • Môn Lý
  • Môn Hóa
  • Môn Sinh
  • Môn Anh
  • Môn Văn
  • Môn Sử
  • Môn Địa
  • Môn GDCD
  • Môn Công nghệ
  • Môn Tin học

Giải và biện luận theo tham số $a$ bất phương trình:  $ |x^2 – 5x + 4| < a     (1) $

03/03/2020 by Baitap.net Để lại bình luận

Đề bài:
Giải và biện luận theo tham số $a$ bất phương trình:  $ |x^2 – 5x + 4| < a     (1) $ Bài giải:
1.    Nếu  $ a \le 0:(1) $  vô nghiệm.
2.    Nếu  $ a > 0 $
a.    Trường hợp  $ x 4 $ 
$ \begin{array}{l}
(1) \Rightarrow {x^2} – 5x + 4 – a \le 0\,\,\,\,\,\,\,(2)
\Leftrightarrow \frac{{5 – \sqrt {9 + 4a} }}{2} \end{array} $
Vì a > 0 $  \Rightarrow \frac{{5 – \sqrt {9 + 4a} }}{2} 4 $
Vậy nghiệm của (1) là: $ \frac{{5 – \sqrt {9 + 4a} }}{2} b. Trường hợp  $ 1 \le x \le 4 $ 
$ \begin{array}{l}
\left( 1 \right) \Rightarrow {x^2} – 5x + 4 + a > 0\,(3)  \,\,\,\,\,  (3)  có  
\Delta  = 9 – 4a
\end{array} $  $ \Delta  1 \le x \le 4,\,\,\,x \ne \frac{5}{2}
\Delta  > 0 \Leftrightarrow 0 \end{array} $
Nghiệm của (3) là :  $ x \frac{{5 + \sqrt {9 – 4a} }}{2} = {x_2} $
Vì  $ o Do đó nghiệm của (1) trong trường hợp này là : $ 1 \le x Vậy nghiệm của (1) là : $ \left( a \right) \cup \left( b \right) \cup \left( c \right) $

Câu trắc nghiệm liên quan:

  1. Với những giá trị nào của $y$ thì bất đẳng thức sau thỏa mãn $\forall x \in \,R\,$ :    ${x^2}\left( {2 – {{\log }_2}\frac{y}{{y + 1}}} \right) + 2x\left( {1 + {{\log }_2}\frac{y}{{y + 1}}} \right) – 2\left( {1 + {{\log }_2}\frac{y}{{y + 1}}} \right) > 0\,\,\,\,\,\,\,\,(1)$
  2.     Tìm $m$ để bất phương trình sau có nghiệm:               $x^2-2mx+2|x-m|+4
  3. Tìm $m$ để hệ: a)$\begin{cases}\frac{7}{6}x-\frac{1}{2}>\frac{3x}{2}-\frac{13}{3}  \\ m^{2}x+1 \geq  m^{4}-x   \end{cases} $ có nghiệm                 b)$\begin{cases}x-2 \geq   0 \\ mx-4 \leq  0 \end{cases} $ có nghiệm là một đoạn có độ dài bằng $5$
  4. Cho bất phương trình $\sqrt{-x^2+6x-5} \geq m-2x                 (1)$ a) Giải phương  trình khi $m=8$b) Tìm $m$ để bất phương trình $(1)$ nghiệm đúng với $\forall x \in [1;5]$
  5. Tìm $m$ để hệ sau có nghiệm duy nhất: $\left\{ \begin{array}{l} x^2+(y+1)^2\leq  m   (1)\\ (x+1)^2+y^2\leq  m   (2) \end{array} \right. $
  6. Giải bất phương trình $\frac{1}{1-x^2}>\frac{3x}{\sqrt{1-x^2}}-1$
  7. Giải bất phương trình:$ |x + 2| – |x – 1| < x - \frac{3}{2} $ 
  8. Tìm $m$ để bất phương trình:a)  $m(x+1)+m^2x\leq 1+m $ có tập nghiệm là $R$b)  $(m+1)x-m^2+m+6>0$ có tập nghiệm là $ \left\{ {x\in R|x>0} \right\}$c)  $(m-2)x+7-6m>0$ có nghiệm với mọi $x\in [1;3]$
  9.    Giải các bất phương trình:a) $\frac{3}{-2x+1}>\frac{5}{3x-2}$                        b)  $\frac{x^2-3x+10}{x^2-4}\leq 2$

Thuộc chủ đề:Bất phương trình Tag với:Bất phương trình

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính




Baitap.net (c) 2019 - Bài Tập Toán Lý Hóa Sinh Anh -Giới thiệu - Liên hệ - Bản quyền - Sitemap - Bảo mật
Học Toán - Học Trắc nghiệm - Ebook Toán - Học Giải - Trắc nghiệm Toán - Giai bai tap hay