Đề bài:
Tìm $a$ để hệ sau có nghiệm : $ \left\{ \begin{array}{l}15x^2 – 11xy + 2y^2 = – 7 (1)\\x < y (2)\\2a^2x + 3ay < 0 (2)\end{array} \right.\,\,\,\,\,\,\,\,(*) $
Bài giải:
Từ $ (1) \Rightarrow x,y \ne 0 $ . Đặt $ x = ky,k \ne 0 $ . Ta có :
(*) $ \Rightarrow \left\{ \begin{array}{l}
\left( {15{k^2} – 11k + 2} \right){y^2} = – 7\,\,\,\,\,\,\,(1′)\\
\left( {k – 1} \right)y \left( {2{a^2}k + 3a} \right)y \end{array} \right. $
Từ $ (1′) \Rightarrow 15{k^2} – 11k + 2 0 \Rightarrow x > 0 $
Do đó $ 2{a^2}k + 3a k a \end{array} \right. $
Từ (4) và (5), ta có : $ \frac{1}{3} Vậy : $ – \frac{9}{2}
Câu trắc nghiệm liên quan:
- Với những giá trị nào của $y$ thì bất đẳng thức sau thỏa mãn $\forall x \in \,R\,$ : ${x^2}\left( {2 – {{\log }_2}\frac{y}{{y + 1}}} \right) + 2x\left( {1 + {{\log }_2}\frac{y}{{y + 1}}} \right) – 2\left( {1 + {{\log }_2}\frac{y}{{y + 1}}} \right) > 0\,\,\,\,\,\,\,\,(1)$
- Tìm $m$ để bất phương trình sau có nghiệm: $x^2-2mx+2|x-m|+4
- Tìm $m$ để hệ: a)$\begin{cases}\frac{7}{6}x-\frac{1}{2}>\frac{3x}{2}-\frac{13}{3} \\ m^{2}x+1 \geq m^{4}-x \end{cases} $ có nghiệm b)$\begin{cases}x-2 \geq 0 \\ mx-4 \leq 0 \end{cases} $ có nghiệm là một đoạn có độ dài bằng $5$
- Cho bất phương trình $\sqrt{-x^2+6x-5} \geq m-2x (1)$ a) Giải phương trình khi $m=8$b) Tìm $m$ để bất phương trình $(1)$ nghiệm đúng với $\forall x \in [1;5]$
- Tìm $m$ để hệ sau có nghiệm duy nhất: $\left\{ \begin{array}{l} x^2+(y+1)^2\leq m (1)\\ (x+1)^2+y^2\leq m (2) \end{array} \right. $
- Giải bất phương trình $\frac{1}{1-x^2}>\frac{3x}{\sqrt{1-x^2}}-1$
- Giải bất phương trình:$ |x + 2| – |x – 1| < x - \frac{3}{2} $
- Tìm $m$ để bất phương trình:a) $m(x+1)+m^2x\leq 1+m $ có tập nghiệm là $R$b) $(m+1)x-m^2+m+6>0$ có tập nghiệm là $ \left\{ {x\in R|x>0} \right\}$c) $(m-2)x+7-6m>0$ có nghiệm với mọi $x\in [1;3]$
- Giải các bất phương trình:a) $\frac{3}{-2x+1}>\frac{5}{3x-2}$ b) $\frac{x^2-3x+10}{x^2-4}\leq 2$
Trả lời