$1.$ Giải phương trình: $\sqrt{3}\sin x+\cos x=\frac{1}{\cos x} $$2.$ Tìm giá trị lớn nhất của hàm số: $y=\sin x\sqrt{\cos x}+\cos x\sqrt{\sin x} $
Bài giải chi tiết:
$1$. $\sqrt 3 {\mathop{\rm s}\nolimits} {\rm{inx}} + \cos x = \frac{1}{{\cos x}} \Leftrightarrow
\sqrt 3 {\mathop{\rm t}\nolimits} {\rm{anx}} + 1 = \frac{1}{{c{\rm{o}}{{\rm{s}}^2}x}}$
$\begin{array}{l}
\Leftrightarrow \sqrt 3 {\mathop{\rm t}\nolimits} {\rm{anx}} + 1 = 1 + {\tan ^2}x\\
\Leftrightarrow \left[ \begin{array}{l}
{\mathop{\rm t}\nolimits} {\rm{anx}} = 0\\
{\mathop{\rm t}\nolimits} {\rm{anx}} = \sqrt 3
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = k\pi \\
x = \frac{\pi }{3} + k\pi
\end{array} \right.(k \in Z)
\end{array}$
$2$. Theo bất đẳng thức Bunhiacopxki:
$\begin{array}{l}
{y^2} = {\left( {{\mathop{\rm s}\nolimits} {\rm{inx}}\sqrt {\cos x} + \cos x\sqrt
{{\mathop{\rm s}\nolimits} {\rm{inx}}} } \right)^2} \le \left( {{{\sin }^2}x + {{\cos }^2}x}
\right)\left( {\cos x + {\mathop{\rm s}\nolimits} {\rm{inx}}} \right)\\
= \sqrt 2 c{\rm{os}}\left( {x – \frac{\pi }{4}} \right) \le \sqrt 2 \\
\Rightarrow y \le \sqrt[4]{2}
\end{array}$
Mặt khác khi x = $\frac{\pi }{4}$ thì sinx = cosx = $\frac{1}{{\sqrt 2 }}$
$ \Rightarrow y = 2.\frac{1}{{\sqrt 2 }}.\sqrt {\frac{1}{{\sqrt 2 }}} = \sqrt[4]{2}$
Do đó $max y = \sqrt[4]{2}$
Câu trắc nghiệm liên quan:
- Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm sốa) $f(x)=x^2 \ln x$ trên đoạn $[1;e].$b) $f(x)=x e^{-x}$ trên nửa khoảng $[0;\infty ).$
- Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số: $f(x)=-x^2+2x+4$ trên đoạn $[2;4]$.
- Trong các nghiệm $(x,y)$ của bất phương trình : $\log _{x^2+y^2}(x+y)\geq 1$. Hãy tìm nghiệm có tổng $x+2y$ lớn nhất.
- Cho hàm số $y=\frac{x^{2}+2x+3}{x^{2}+2}$. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số.
- Cho $n$ số ${a_1},{a_2},…,{a_n}$với ${a_1} < {a_2} < ... < {a_n}$. Tìm giá trị nhỏ nhất của hàm số $f(x) = \sum\limits_{i = 1}^n {|{x - {a_i}}| } $
- Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm sốa) $y=\frac{\ln^2 x}{x} $ trên đoạn $[1;e^3].$b) $y=x^2e^{-x}$ trên đoạn $[0; \ln 8].$
- Cho $a,b,c,d$ là bốn số thực thỏa mãn các điều kiện: $\begin{cases}a^2+b^2+6=4(a+b) \\ c^2+d^2+64=12(c+d) \end{cases}$ Tìm GTLN, GTNN của biểu thức: $S=(a-c)^2+(b-d)^2$
- Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số : $y=\frac{3\sin x}{2+\cos x}$.
- Cho \(x^{2}+y^{2}=2\) (\(x,y>0\)). Tìm giá trị lớn nhất của \((x+y)xy\).
Trả lời