Cho $a,b,c$ là ba số dương sao cho $abc=1$. Tìm giá trị nhỏ nhất của biểu thức :$Q=\frac{bc}{a^2(b+c)} + \frac{ca}{b^2(c+a)}+\frac{ab}{c^2(a+b)}$
Bài giải chi tiết:
Đặt $\frac{1}{a}=x >0,\frac{1}{b}=y>0,\frac{1}{c}=z>0$.Ta có abc=$1 \Leftrightarrow xyz=1$
Biểu thức Q trở thành $Q=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y} (2)$
Áp dụng bất đẳng thức Svacxở vào $(2)$ ta có :
$Q \geq \frac{(x+y+z)^2}{(y+z)+(z+x)+(x+y)} = \frac{x+y+z}{2} \geq \frac{3\sqrt[3]{xyz}}{2} =\frac{3}{2} (3)$
Dấu đẳng thức trong $(2)$ và $(3)$ đồng t hời có khi và chỉ khi $x=y=z=1$
Vậy min$Q$=$\frac{3}{2}$
Câu trắc nghiệm liên quan:
- Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm sốa) $f(x)=x^2 \ln x$ trên đoạn $[1;e].$b) $f(x)=x e^{-x}$ trên nửa khoảng $[0;\infty ).$
- Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số: $f(x)=-x^2+2x+4$ trên đoạn $[2;4]$.
- Trong các nghiệm $(x,y)$ của bất phương trình : $\log _{x^2+y^2}(x+y)\geq 1$. Hãy tìm nghiệm có tổng $x+2y$ lớn nhất.
- Cho hàm số $y=\frac{x^{2}+2x+3}{x^{2}+2}$. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số.
- Cho $n$ số ${a_1},{a_2},…,{a_n}$với ${a_1} < {a_2} < ... < {a_n}$. Tìm giá trị nhỏ nhất của hàm số $f(x) = \sum\limits_{i = 1}^n {|{x - {a_i}}| } $
- Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm sốa) $y=\frac{\ln^2 x}{x} $ trên đoạn $[1;e^3].$b) $y=x^2e^{-x}$ trên đoạn $[0; \ln 8].$
- Cho $a,b,c,d$ là bốn số thực thỏa mãn các điều kiện: $\begin{cases}a^2+b^2+6=4(a+b) \\ c^2+d^2+64=12(c+d) \end{cases}$ Tìm GTLN, GTNN của biểu thức: $S=(a-c)^2+(b-d)^2$
- Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số : $y=\frac{3\sin x}{2+\cos x}$.
- Cho \(x^{2}+y^{2}=2\) (\(x,y>0\)). Tìm giá trị lớn nhất của \((x+y)xy\).
Trả lời