Cho các hàm số : $f(x) = \frac{x}{{1 + \left| x \right|}},g(x) = \frac{x}{{1 – \left| x \right|}}$$ a)$ Tìm miền xác định và miền giá trị của $f(x) $ và $g(x).$$ b)$ Tìm $g_0f$ và $f_0g.$
Bài giải chi tiết:
$a)$ $f(x) = \frac{x}{{1 + \left| x \right|}}$ có miền xác định : $D = R$
$f( – x) = – \frac{x}{{1 + \left| x \right|}} = -f(x) \Rightarrow f(x)$ lẻ.
Ta chỉ tìm miền giá trị ứng với $x\in [0, +\infty $] rồi sau đó lấy đối xứng qua $Oy$ : $\forall y \in
f((0, + \infty ));\exists x \in (0, + \infty ):y = \frac{x}{{1 + x}}$
$ \Leftrightarrow (1 – y)x = y \Rightarrow \frac{y}{{1 – y}} \ge 0 \Leftrightarrow y \in
{\rm{[}}0,1)$
Lấy đối xứng qua $Oy$, miền giá trị $T = (-1,1)$
Tương tự $g(x)$ cũng là hàm số lẻ
$\Rightarrow $ Miền xác định $D = R\left\{ {\pm 1} \right\}$
Miền giá trị : $T = R$
$b) (g_0f) = g[f(x)] =$ $\frac{{f\left( x \right)}}{{1 – \left| {f(x)} \right|}} = \frac{{\frac{x}{{1 +
\left| x \right|}}}}{{1 – \left| {\frac{x}{{1 + \left| x \right|}}} \right|}} = \frac{{\frac{x}{{1 +
\left| x \right|}}}}{{1 – \frac{{\left| x \right|}}{{1 + \left| x \right|}}}} = x$
$(f_0g)(x) = f[g(x)] =$ $\frac{{g\left( x \right)}}{{1 + \left| {g(x)} \right|}} = \frac{{\frac{x}{{1 –
\left| x \right|}}}}{{1 + \left| {\frac{x}{{1 – \left| x \right|}}} \right|}}$ ($*)$
• $ x \geq 0 : (*) \Leftrightarrow (f0g)(x) =$ $\frac{{\frac{x}{{1 – x}}}}{{1 + \left| {\frac{x}{{1 – x}}}
\right|}}$
*$ 0 \leq x * $x > 1$ : $\left| {\frac{x}{{1 – x}}} \right|$ = $ – \frac{x}{{1 – x}}$ $\Rightarrow (f0g)(x) = \frac{x}{{1 – 2x}}$
• $ x – \left| x \right|}}} \right|}}$
* $-1 * $x Tóm lại : $(f_0g)(x) = \left\{ \begin{array}{l}
\frac{x}{{1 – 2\left| x \right|}}x 1\\
x{\rm{- 1 \end{array} \right.$
Câu trắc nghiệm liên quan:
- Tính đạo hàm của hàm số:a) $y = \ln |x+ \sqrt{x^2 +1}| $; b) $y = \ln |\frac{\cos x + \sin x}{\cos x – \sin x}|; $b) $y = \ln |\tan \frac{x}{2}|; $ d) $y = \ln \left (\frac{x^2+x-2}{x^2-6x+8} \right) $
- Định $m$ để hàm số :$y=\sqrt{mx-2m+1}+\sqrt{2x+m-2} $ xác định khi $x \geq 1$
- Với những giá trị nào của $x$ thì các biểu thức sau có nghĩaa) $\sqrt[6]{2x-4}+\sqrt[8]{2-x} $ b) $\sqrt[4]{2x^2-x-1} $c) $\sqrt[5]{\frac{2x+1}{6-3x} }. $
- Cho hàm số : $f(x) = \sqrt {{sin^4}x + {cos ^4}x – 2msinxcos x} $Tìm các giá trị của m để $f(x)$ xác định với mọi $x.$
- Tìm tập xác định của hàm số $y=\frac{5x+3} {|x^2-4|+|x^2-3x+2|}$
- Với các giá trị nào của $m$ thì hàm số : $y = {2^{\log_3\left[ {\left( {m + 1} \right)x^2- 2\left( {m – 1} \right)x + 2m – 1} \right]}}$ xác định với mọi $x \in R$
- Tìm tập xác định của hàm số:$y = {2^{\sqrt {\left| {X – 3} \right| – \left| {8 – X} \right|} }} + {\sqrt {\frac{{ – {{\log }_{0,3}}(X – 1)}}{{\sqrt {{X^2} – 2X – 8} }}} _{}}$ĐH Y Hà Nội 1997
- Xác định $m$ để các hàm số sau đấy xác định với mọi $x>0$a) $y=\sqrt{x-m}+\sqrt{2x-m-1}$ b) $y=\sqrt{2x-3m+4}+\frac{x-m}{x+m-1}$
- Tìm tập xác định của các hàm số:a) $y=(x^2-9)^{-4}$b) $y=x^\pi+(x^2+x-2)^e$
Trả lời