• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar

Bài Tập Toán Lý Hóa Sinh Tiếng Anh

Tập hợp bài tập môn Toán, Lý, Hóa, Sinh, Tiếng Anh, Sử, Địa, GDCD, Văn Phổ thông

  • Môn Toán
  • Môn Lý
  • Môn Hóa
  • Môn Sinh
  • Môn Anh
  • Môn Văn
  • Môn Sử
  • Môn Địa
  • Môn GDCD
  • Môn Công nghệ
  • Môn Tin học

Cho Elip $(E)$ có phương trình: $\frac{x^2}{a^2}+\frac{y^2}{b^2} =1 $, với $0

09/01/2020 by Baitap.net Để lại bình luận

Cho Elip $(E)$ có phương trình: $\frac{x^2}{a^2}+\frac{y^2}{b^2} =1 $, với $0

Bài giải chi tiết:

a. Gọi $M(x_M;y_M)\in (E)$, suy ra $\frac{x_M^2}{a^2}+\frac{y_M^2}{b^2}=1          (*)$
Khi đó:
$\begin{array}{l}
O{M^2} = x_M^2 + y_M^2 = {a^2}\left( {\frac{{x_M^2}}{{{a^2}}} + \frac{{y_M^2}}{{{a^2}}}} \right) \le {a^2}\left( {\frac{{x_M^2}}{{{a^2}}} + \frac{{y_M^2}}{{{b^2}}}} \right) = {a^2}\\
 \Rightarrow OM \le a\,\,\,\,\,(1)\\
O{M^2} = x_M^2 + y_M^2 = {b^2}\left( {\frac{{x_M^2}}{{{b^2}}} + \frac{{y_M^2}}{{{b^2}}}} \right) \le {a^2}\left( {\frac{{x_M^2}}{{{a^2}}} + \frac{{y_M^2}}{{{b^2}}}} \right) = {b^2}\\
 \Rightarrow OM \ge b\,\,\,\,(2)
\end{array}$
Từ $(1), (2)$ ta được: $b\leq  OM\leq  a$
b. Ta có: $F_1M^2=(x_M+c)^2+y_M^2=(x_M+c)^2+b^2(1-\frac{x_M^2}{a^2} )=(ex_M+a)^2$
$\Rightarrow  F_1M=ex_M+a$
Vì $-a\leq  x_M\leq  a\Rightarrow  -a.e+a\leq  ex_M+a\leq  ae+a\Leftrightarrow  a-c\leq  F_1M\leq  a+c$
Vậy, ta được:
$F_1M_{Max}=a+c$ đạt được khi $M(a;0)\equiv A_2$
$F_1M_{Min}=a-c$ đạt được khi $M(-a;0)\equiv A_1$

Câu trắc nghiệm liên quan:

  1. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm sốa) $f(x)=x^2 \ln x$ trên đoạn $[1;e].$b) $f(x)=x e^{-x}$ trên nửa khoảng $[0;\infty ).$
  2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số:   $f(x)=-x^2+2x+4$ trên đoạn $[2;4]$.
  3. Trong các nghiệm $(x,y)$ của bất phương trình : $\log _{x^2+y^2}(x+y)\geq 1$.  Hãy tìm nghiệm có tổng $x+2y$ lớn nhất.
  4. Cho hàm số $y=\frac{x^{2}+2x+3}{x^{2}+2}$. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số.
  5. Cho $n$ số ${a_1},{a_2},…,{a_n}$với ${a_1} < {a_2} < ... < {a_n}$. Tìm giá trị nhỏ nhất của hàm số $f(x) = \sum\limits_{i = 1}^n {|{x - {a_i}}| } $
  6. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm sốa) $y=\frac{\ln^2 x}{x} $ trên đoạn $[1;e^3].$b) $y=x^2e^{-x}$ trên đoạn $[0; \ln 8].$
  7.   Cho $a,b,c,d$ là bốn số thực thỏa mãn các điều kiện:          $\begin{cases}a^2+b^2+6=4(a+b) \\ c^2+d^2+64=12(c+d) \end{cases}$ Tìm GTLN, GTNN của biểu thức: $S=(a-c)^2+(b-d)^2$
  8. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số :         $y=\frac{3\sin x}{2+\cos x}$.
  9. Cho \(x^{2}+y^{2}=2\) (\(x,y>0\)). Tìm giá trị lớn nhất của \((x+y)xy\).

Thuộc chủ đề:Hàm số Tag với:Giá trị lớn nhất - nhỏ nhất

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính




Baitap.net (c) 2019 - Bài Tập Toán Lý Hóa Sinh Anh -Giới thiệu - Liên hệ - Bản quyền - Sitemap - Bảo mật
Học Toán - Học Trắc nghiệm - Ebook Toán - Học Giải - Mon Toán - Giai bai tap hay - Lop 12 - - HocZ Net -