Cho hàm số \(y = \frac{{ – {x^2} + mx + m}}{{ – mx + m}}\)$1$. Tìm điểm cố định mà đồ thị hàm số đi qua với mọi $m$ \( \ne 0\)$2$. Viết phương trình đường thẳng đi qua điểm \(M\left( {0;\frac{5}{4}} \right)\) và tiếp xúc với đồ thị \(\left( {{C_1}} \right)\)
Bài giải chi tiết:
$1$. Ta có:
\( \left\{ \begin{array}{l}
– ymx + my = – {x^2} + mx + m\\
mx \ne m
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
m\left( {x + 1 – y + yx} \right) = – {x^2}\\
mx \ne m
\end{array} \right.\left( 1 \right)\)
$(1)$ đúng với mọi $m$ \( \ne 0 \Leftrightarrow \left\{ \begin{array}{l}
– {x^2} = 0\\
x + 1 – y + yx = 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x = 0\\
y = 1
\end{array} \right.\)
Vậy với \(\forall m \ne 0\) đồ thị luôn đi qua $A(0, 1)$
$2$. Tiếp tuyến tổng quát có phương trình:
\(y = f\left( {{x_0}} \right)\left( {x – {x_0}} \right) + f\left( {{x_0}} \right) = \left( {1 + \frac{1}{{{{\left( {{x_0} – 1} \right)}^2}}}} \right)\left( {x – {x_0}} \right) + {x_0} – \frac{1}{{{x_0} – 1}} \left( 1 \right)\) ($x_0$ là hoành độ tiếp điểm)
Tiếp tuyến $(1)$qua $M (0, \frac{5}{4})$ \( \Leftrightarrow 5x_0^2 – 2{x_0} + 1 = 0 \left( 2 \right)\)
$(2)$ vô nghiệm, do đó không có tiếp tuyến nào qua $M$.
Câu trắc nghiệm liên quan:
- Cho hàm số: $y = \frac{x – 2}{x + 1}$.1) Khảo sát sự biến thiên và vẽ đồ thị hàm số.2) $M$ là một điểm có hoành đố $a \ne – 1$, và thuộc đồ thị. Viết phương trình tiếp tuyến của đồ thị tại điểm $M$.3) Tính khoảng cách từ điểm $I(-1; 1)$ đến tiếp tuyến đó. Xác định $a$ để khoảng cách ấy là lớn nhất
- Xem hàm số $y = \frac{{{x^2} – 3x + 4}}{{2x – 2}}$1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số.2) $M$ là một điểm tùy ý thuộc đồ thị.Tiếp tuyến của đồ thị tại $M$ cắt tiệm cận đứng và tiệm cận xiên tại $A$ và $B$. Chứng tỏ rằng $M$ là trung điểm của đoạn $AB$, và tam giác $IAB$, với $I$ là giao điểm của hai tiệm cận, có diện tích không phụ thuộc vào $M$.3) Tìm trên đồ thị hai điểm đối xứng với nhau qua đường thẳng $y = x$
- Viết phương trình tiếp tuyến của đồ thị $(C):y = x^3 -3x^2 + 2 $ biết tiếp tuyến đó vuông góc với đường thẳng: $ 5y – 3x + 4 = 0 $ .
- Cho hàm số: $y = \frac{1}{3}{x^3} – m{x^2} + (2m – 1)x – m + 2\,\,\,(1)$$1.$ Khảo sát và vẽ đồ thị ($C$) của hàm số ($1$) ứng với $m = 2.$$2.$ Qua điểm $A\left( {4/9;4/3} \right)$kẻ được mấy tiếp tuyến tới đồ thị ($C)$? Viết phương trình tiếp tuyến ấy.$3.$ Với giá trị nào của $m$ thì hàm số ($1$) nghịch biến trên khoảng ($-2;0$).
- Cho parabol $y=x^2+x (P)$. Viết phương trình tiếp tuyến của $(P)$ tại điểm có hoành độ $x=2$
- Cho hàm số $y = \frac{2x – 4}{x + 1} (C)$. Gọi $M$ là một điểm bất kì trên đồ thị $(C)$, tiếp tuyến tại $M$ cắt các tiệm cận của $(C)$ tại $A, B$. Chứng minh rằng diện tích tam giác $ABI$ ($I$ là giao của hai tiệm cận) không phụ thuộc vào vị trí của $M$.
- Cho hàm số:$y = \frac{ – 2x + 1}{x + 2}\,$$1$. Khảo sát sự biến thiên và vẽ đồ thị của hàm số. $2$. Viết phương trình tiếp tuyến với đồ thị hàm số song song với đường thẳng $y = -x$
- Cho hai hàm số: ${y_1} = {x^2} – mx – 2$ và ${y_2} = \frac{{2 – mx}}{{x – 1}}$Chứng minh với $\forall m$ đồ thị của chúng luôn đi qua cùng một điểm cố định. Tìm $m$ để tại điểm cố định đó hai đồ thị tiếp xúc nhau, tìm phương trình tiếp tuyến chung
- a) Đồ thị của hàm số $y=\frac{1}{2} x^4 – x $ có tiếp tuyến là $y=-\frac{3}{4} x -\frac{3}{32} $. Tìm tiếp điểm.b) Tại điểm nào thì tiếp tuyến với đồ thị hàm số tạo với chiều dương trục hoành một góc $45^0$. $ y=\frac{1}{3} x^3 -\frac{5}{2} x^2 +7x -4 $
Trả lời