Cho hàm số: $y = \frac{{ – {x^2} + x + a}}{{x + a}}$, trong đó $a$ là tham số.1) Xác định $a$ để đồ thị hàm số có tiện cận xiên đi qua điểm $(0; 2)$.Khảo sát sự biến thiên và vẽ đồ thị của hàm số ứng với giá trị vừa tìm được của $a$.2) Xác định tất cả các giá rị của $a$ để đồ thị hàm số cắt đường thẳng $y = x – 1$ tại 2 điểm phân biệt. Khi đó gọi ${y_1},{y_2}$ là tung độ của 2 giao điểm, hãy tìm một hệ thức giữa ${y_1},{y_2}$ không phụ thuộc vào $a$
Bài giải chi tiết:
$1)$ Viết lại hàm số dưới dạng: $y = – x + a + 1 – \frac{a}{{x + a}}$
Khi đó tiệm cận xiên của đồ thị hàm số là $y = – x + a + 1$.
Tiệm cận xiên đi qua điểm $(2; 0)$ suy ra $a = 1$.
Khảo sát sự biến thiên và vẽ đồ thị hàm số ứng với giá trị $a = 2$ dành cho bạn đọc.
$2)$ Hoành độ giao điểm của đồ thị hàm số và đường thẳng $y = x – 1$ thỏa mãn phương trình $\frac{{ – {x^2} + x + a}}{{x + a}} = x – 1$ hay $2{x^2} + \left( {a – 2} \right)x – 2a = 0$.
Để có giao điểm phân biệt ta cần có:
$\Delta = {\left( {a – 2} \right)^2} + 16a = {a^2} + 12a + 4 > 0$
$ \Leftrightarrow a – 6 + 4\sqrt 2 $.
Gọi ${x_1},{x_2}$ là hoành độ hai giao điểm đó, ta có
${x_1} + {x_2} = \left( {2 – a} \right)2, {x_1}{x_2} = – a$
Do đó tung độ tương ứng là ${y_1} = {x_1} – 1,{y_2} = {x_2} – 1$.
Từ đó ta có
${y_1} + {y_2} = {x_1} + {x_2} – 2 = \left( {2 – a} \right)/2 – 2 = – \left( {a/2} \right) – 1$
${y_1}{y_2} = \left( {{x_1} – 1} \right)\left( {{x_2} – 1} \right) = {x_1}{x_2} – \left( {{x_1} + {x_2}} \right) + 1 = – a – \left( {2 – a} \right)/2 + 1 = – a/2$
$ \Rightarrow {y_1}{y_2} – \left( {{y_1} + {y_2}} \right) = – \frac{a}{2} – \left( { – \frac{a}{2} – 1} \right) = 1$.
Hệ thức đó của ${y_1},{y_2}$ không phụ thuộc vào $a$
Câu trắc nghiệm liên quan:
- Cho parabol: $y = {x^2}+(2m + 1)x + {m^2} – 1$. Trong đó $m$ là tham số.a) Tìm quỹ tích đỉnh của parabol khi $m$ biến thiênb) Chứng minh rằng khoảng cách giữa các giao điểm của đường thẳng $y = x$ với parabol không phụ thuộc vào $m$.c) Chứng minh rằng với mọi giá trị của $m$, parabol luôn tiếp xúc với một đường thẳng cố định
- Cho hai đường thẳng \(d_1\) và \(d_2\) có phương trình: \(d_1: (a+b)x+y=1\) \(d_2: (a^2-b^2)x+ay=b\).a) Tìm giao điểm của \(d_1\) và \(d_2\) biện luận theo \(a,b\)b) Tìm điều kiện của \(a\) và \(b\) để \(d_1\) và \(d_2\) và trục hoành cắt nhau tại 1 điểm.
- Cho hàm số: $y = {x^3} – 3x\,\,(1)$$1$. Khảo sát hàm số ($1).$$2$. Chứng minh rằng khi $m$ thay đổi, đường thẳng cho bởi phương trình $y = m(x + 1) + 2$ luôn cắt đồ thị hàm số ($1$) tại một điểm $A$ cố định.Hãy xác định các giá trị của $m$ để đường thẳng cắt đồ thị hàm số ($1$) tại $3$ điểm $A, B, C$ khác nhau sao cho tiếp tuyến với đồ thị tại $B$ và $C$ vuông góc với nhau.
- Cho các đường: $y = – \frac{{{x^3}}}{3} + 3x$ $(P)$ và $y = m(x – 3)$ $(T)$1) Với giá trị nào của $m$ thì $(T)$ là tiếp tuyến của $(P)$?2) Chứng tỏ họ $(T)$ đi qua một điểm cố định $A$ thuộc $(P)$.3) Gọi $A, B, C$ là các giao điểm của $(P)$ và $(T)$. Hãy tìm m để $OB \bot OC$ ($O$ là gốc tọa độ)
- Cho hàm số: $y = x^3 – \frac{3}{2}mx^2 + \frac{1}{2}{m^3}$ với $m$ là tham số$1$. Khảo sát sự biến thiên và vẽ đồ thị hàm số khi $m = 1.$$2$. Xác định $m$ để đồ thị hàm số có các điểm cực đại và cực tiểu đối xứng nhau qua đường thẳng $y = x.$$3$. Xác định $m$ để đường thẳng $y = x$ cắt đồ thị hàm số tại ba điểm phân biệt $A, B, C$ sao cho $AB = BC.$
- Tính đạo hàm các hàm số sau đây:a) $y=\sin 3x-\cos3x$ b) $y=\frac {x}{\sin x}$ c) $y=\sin ^32x$ d) $y= \cos \frac{1}{x}$
- Cho hàm số: $y = \frac{{{x^2} – (2m + 1)x + {m^2} – m}}{{x + {m^2} + 4m + 5}}$trong đó $m$ là tham số1) Tìm quỹ tích giao điểm của đồ thị với trục $Ox$, khi $m$ thay đổi.2) Tìm quỹ tích giao điểm của đồ thị với trục $Oy$, khi $m$ thay đổi
- Xem hàm số $y = \frac{{{x^2} – 3x + 4}}{{2x – 2}}$1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số.2) $M$ là một điểm tùy ý thuộc đồ thị.Tiếp tuyến của đồ thị tại $M$ cắt tiệm cận đứng và tiệm cận xiên tại $A$ và $B$. Chứng tỏ rằng $M$ là trung điểm của đoạn $AB$, và tam giác $IAB$, với $I$ là giao điểm của hai tiệm cận, có diện tích không phụ thuộc vào $M$.3) Tìm trên đồ thị hai điểm đối xứng với nhau qua đường thẳng $y = x$
- Cho hàm số: $y = {x^2}(m – x) – m$ (1)a) Chứng minh rằng đường thẳng $y = kx + k + 1$ luôn luôn cắt đường cong (1) tại một điểm cố định.b) Tìm $k$ theo $m$ để đường thẳng cắt đường cong (1) tại ba điểm phân biệt.c) Tìm $m$ để hàm số (1) đồng biến trong khoảng $1 < x < 2$
Trả lời