Cho hàm số: $y = \frac{3(x + 1)}{x – 2}\,\,\,\,(C)$$1$. Khảo sát sự biến thiên và vẽ đồ thị hàm số.$2$. Viết phương trình các đường thẳng đi qua $O(0;0)$ và tiếp xúc với $(C).$$3$. Tìm tất cả các điểm trên ($C$) có tọa độ là các số nguyên.
Bài giải chi tiết:
$1.$ Bạn đọc tự giải
$2.$ Phương trình tiếp tuyến tại điểm $M_0(x_0,y_0)\in (C)$ là
$y=-\frac{9}{(x_0-2)^2}(x-x_0)+y_0 $ với $y_0=\frac{3(x_0+1)}{x_0-2} $
Để đường thẳng đó đi qua $O(0,0),$ điều kiện cần và đủ là :
$\begin{array}{l}
\frac{{9{x_0}}}{{{{({x_0} – 2)}^2}}} + \frac{{3({x_0} + 1)}}{{{x_0} – 2}} = 0\\
\Leftrightarrow \left\{ \begin{array}{l}
{x_0} \ne 2\\
x_0^2 + 2{x_0} – 2 = 0
\end{array} \right. \Leftrightarrow {x_0} = – 1 \pm \sqrt 3
\end{array}$
Phương trình tiếp tuyến cần tìm:
$\left[ \begin{array}{l}
y = – \frac{3}{2}\left( {2 + \sqrt 3 } \right)x\\
y = – \frac{3}{2}\left( {2 – \sqrt 3 } \right)x
\end{array} \right.$
$3.$ Ta viết lại:
$y = 3 + \frac{9}{{x – 2}}$ Điều kiện cần và đủ để điểm $M$ thuộc ($C$) có tọa độ nguyên là $x – 2$ nhận các giá trị $\pm 1,\pm3,\pm9$.Hay $x$ nhận các giá trị $2,\pm1,2\pm3,2\pm9$
Từ đó ta được $6$ điểm tọa độ nguyên:
$(1;-6) (-3;12) (-1;0) (5;6) (-7;2) (11;4)$
Câu trắc nghiệm liên quan:
- Cho hàm số: $y = \frac{x – 2}{x + 1}$.1) Khảo sát sự biến thiên và vẽ đồ thị hàm số.2) $M$ là một điểm có hoành đố $a \ne – 1$, và thuộc đồ thị. Viết phương trình tiếp tuyến của đồ thị tại điểm $M$.3) Tính khoảng cách từ điểm $I(-1; 1)$ đến tiếp tuyến đó. Xác định $a$ để khoảng cách ấy là lớn nhất
- Xem hàm số $y = \frac{{{x^2} – 3x + 4}}{{2x – 2}}$1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số.2) $M$ là một điểm tùy ý thuộc đồ thị.Tiếp tuyến của đồ thị tại $M$ cắt tiệm cận đứng và tiệm cận xiên tại $A$ và $B$. Chứng tỏ rằng $M$ là trung điểm của đoạn $AB$, và tam giác $IAB$, với $I$ là giao điểm của hai tiệm cận, có diện tích không phụ thuộc vào $M$.3) Tìm trên đồ thị hai điểm đối xứng với nhau qua đường thẳng $y = x$
- Viết phương trình tiếp tuyến của đồ thị $(C):y = x^3 -3x^2 + 2 $ biết tiếp tuyến đó vuông góc với đường thẳng: $ 5y – 3x + 4 = 0 $ .
- Cho hàm số: $y = \frac{1}{3}{x^3} – m{x^2} + (2m – 1)x – m + 2\,\,\,(1)$$1.$ Khảo sát và vẽ đồ thị ($C$) của hàm số ($1$) ứng với $m = 2.$$2.$ Qua điểm $A\left( {4/9;4/3} \right)$kẻ được mấy tiếp tuyến tới đồ thị ($C)$? Viết phương trình tiếp tuyến ấy.$3.$ Với giá trị nào của $m$ thì hàm số ($1$) nghịch biến trên khoảng ($-2;0$).
- Cho parabol $y=x^2+x (P)$. Viết phương trình tiếp tuyến của $(P)$ tại điểm có hoành độ $x=2$
- Cho hàm số $y = \frac{2x – 4}{x + 1} (C)$. Gọi $M$ là một điểm bất kì trên đồ thị $(C)$, tiếp tuyến tại $M$ cắt các tiệm cận của $(C)$ tại $A, B$. Chứng minh rằng diện tích tam giác $ABI$ ($I$ là giao của hai tiệm cận) không phụ thuộc vào vị trí của $M$.
- Cho hàm số:$y = \frac{ – 2x + 1}{x + 2}\,$$1$. Khảo sát sự biến thiên và vẽ đồ thị của hàm số. $2$. Viết phương trình tiếp tuyến với đồ thị hàm số song song với đường thẳng $y = -x$
- Cho hai hàm số: ${y_1} = {x^2} – mx – 2$ và ${y_2} = \frac{{2 – mx}}{{x – 1}}$Chứng minh với $\forall m$ đồ thị của chúng luôn đi qua cùng một điểm cố định. Tìm $m$ để tại điểm cố định đó hai đồ thị tiếp xúc nhau, tìm phương trình tiếp tuyến chung
- a) Đồ thị của hàm số $y=\frac{1}{2} x^4 – x $ có tiếp tuyến là $y=-\frac{3}{4} x -\frac{3}{32} $. Tìm tiếp điểm.b) Tại điểm nào thì tiếp tuyến với đồ thị hàm số tạo với chiều dương trục hoành một góc $45^0$. $ y=\frac{1}{3} x^3 -\frac{5}{2} x^2 +7x -4 $
Trả lời