• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar

Bài Tập Toán Lý Hóa Sinh Tiếng Anh

Tập hợp bài tập môn Toán, Lý, Hóa, Sinh, Tiếng Anh, Sử, Địa, GDCD, Văn Phổ thông

  • Môn Toán
  • Môn Lý
  • Môn Hóa
  • Môn Sinh
  • Môn Anh
  • Môn Văn
  • Môn Sử
  • Môn Địa
  • Môn GDCD
  • Môn Công nghệ
  • Môn Tin học

Cho hàm số:  $y = \frac{mx^2 + 3mx + 2m + 1}{x + 2}                (1)$1) Chứng minh rằng với mọi giá trị $m$, tiệm cận xiên (hay ngang) của đồ thị hàm số $(1)$ luôn đi qua một điểm cố định.2) Với mỗi giá trị $m$ cho trước, hãy viết phương trình đường thẳng đi qua điểm $A( – 1;0)$ và tiếp xúc với đồ thị hàm số $(1)$

18/01/2020 by Baitap.net Để lại bình luận

Cho hàm số:  $y = \frac{mx^2 + 3mx + 2m + 1}{x + 2}                (1)$1) Chứng minh rằng với mọi giá trị $m$, tiệm cận xiên (hay ngang) của đồ thị hàm số $(1)$ luôn đi qua một điểm cố định.2) Với mỗi giá trị $m$ cho trước, hãy viết phương trình đường thẳng đi qua điểm $A( – 1;0)$ và tiếp xúc với đồ thị hàm số $(1)$

Bài giải chi tiết:

$1)$ Trong trường hợp tổng quát ta biến đổi biểu thức của hàm số (1) dưới dạng (lấy tử chia cho mẫu)
$y = mx + m + \frac{1}{{x + 2}}$                $(2)$
Vậy đồ thị của hàm số có tiệm cận xiên (hay ngang, điều này xảy ra  khi $m = 0$).
$y = m(x + 1)$
Với $x = – 1$, ta luôn có $y = 0$. Vậy tiệm cận xiên (hay ngang) luôn luôn đi qua điểm $A( – 1;{\rm{ 0)}}$.

$2)$ Gọi $k$ là hệ số góc của đường thẳng $d$ đi qua $A( – 1;{\rm{ 0)}}$. Đường thẳng $d$ có phương trình
$y = k(x + 1)$
Để $d$ tiếp xúc với đồ thị hàm số $(1)$ (hay $(2)$), thì phương trình sau đây (sẽ quy về phương trình bậc hai) phải có nghiệm kép
    $m(x + 1) + \frac{1}{{x + 2}} = k(x + 1){\rm{ }} \Leftrightarrow (m – k)(x + 1) + \frac{1}{{x + 2}} = 0$
$\begin{array}{l}
 \Leftrightarrow (m – k)(x + 1)(x + 2) + 1 = 0\\
 \Leftrightarrow (m – k){x^2} + 3(m – k)x + \left[ {2(m – k) + 1} \right] = 0{\rm{                                 (3)}}
\end{array}$

Để $(3)$ có nghiệm kép thì $(3)$ phải là những phương trình bậc $2$ với $\Delta  = 0$, tức là
    $\left\{ \begin{array}{l}
m – k \ne 0\\
\Delta = 9{(m – k)^2} – 4(m – k)\left[ {2(m – k) + 1} \right] = (m – k)(m – k – 4) = 0
\end{array} \right.$
$ \Leftrightarrow k = m – 4$
Vậy với mỗi giá trị $m$ cho trước, từ điểm $A( – 1;{\rm{ 0)}}$ ta kẻ được đúng một tiếp tuyến đến đồ thị hàm số $(1)$, có phương trình: $y = (m – 4)(x + 1)$

Câu trắc nghiệm liên quan:

  1. Cho hàm số:  $y = \frac{x – 2}{x + 1}$.1)    Khảo sát sự biến thiên và vẽ đồ thị hàm số.2)    $M$ là một điểm có hoành đố $a \ne  – 1$, và thuộc đồ thị. Viết phương trình tiếp tuyến của đồ thị tại điểm $M$.3)    Tính khoảng cách từ điểm $I(-1; 1)$ đến tiếp tuyến đó. Xác định $a$ để khoảng cách ấy là lớn nhất
  2. Xem hàm số   $y = \frac{{{x^2} – 3x + 4}}{{2x – 2}}$1)    Khảo sát sự biến thiên và vẽ đồ thị của hàm số.2)    $M$ là một điểm tùy ý thuộc đồ thị.Tiếp tuyến của đồ thị tại $M$ cắt tiệm cận đứng và tiệm cận xiên tại $A$ và $B$. Chứng tỏ rằng $M$ là trung điểm của đoạn $AB$, và tam giác $IAB$, với $I$ là giao điểm của hai tiệm cận, có diện tích không phụ thuộc vào $M$.3)    Tìm trên đồ thị hai điểm đối xứng với nhau qua đường thẳng $y = x$
  3. Viết phương trình tiếp tuyến của đồ thị  $(C):y = x^3 -3x^2 + 2 $  biết tiếp tuyến đó vuông góc với đường thẳng:  $ 5y – 3x + 4 = 0 $ .
  4. Cho hàm số: $y = \frac{1}{3}{x^3} – m{x^2} + (2m – 1)x – m + 2\,\,\,(1)$$1.$ Khảo sát và vẽ đồ thị ($C$) của hàm số ($1$) ứng với $m = 2.$$2.$ Qua điểm $A\left( {4/9;4/3} \right)$kẻ được mấy tiếp tuyến tới đồ thị ($C)$? Viết phương trình tiếp tuyến ấy.$3.$ Với giá trị nào của $m$ thì hàm số ($1$) nghịch biến trên khoảng ($-2;0$).
  5. Cho parabol $y=x^2+x   (P)$. Viết phương trình tiếp tuyến của $(P)$ tại điểm có hoành độ $x=2$
  6. Cho hàm số $y = \frac{2x – 4}{x + 1}  (C)$. Gọi $M$ là một điểm bất kì trên đồ thị $(C)$, tiếp tuyến tại $M$ cắt các tiệm cận của $(C)$ tại $A, B$. Chứng minh rằng diện tích tam giác $ABI$ ($I$ là giao của hai tiệm cận) không phụ thuộc vào vị trí của $M$.
  7. Cho hàm số:$y = \frac{ – 2x + 1}{x + 2}\,$$1$. Khảo sát sự biến thiên và vẽ đồ thị của hàm số. $2$. Viết phương trình tiếp tuyến với đồ thị hàm số song song với đường thẳng $y = -x$
  8. Cho hai hàm số:  ${y_1} = {x^2} – mx – 2$ và ${y_2} = \frac{{2 – mx}}{{x – 1}}$Chứng minh với $\forall m$ đồ thị của chúng luôn đi qua cùng một điểm cố định. Tìm $m$ để tại điểm cố định đó hai đồ thị tiếp xúc nhau, tìm phương trình tiếp tuyến chung
  9. a) Đồ thị của hàm số $y=\frac{1}{2} x^4 – x $ có tiếp tuyến là $y=-\frac{3}{4} x -\frac{3}{32}  $. Tìm tiếp điểm.b) Tại điểm nào thì tiếp tuyến với đồ thị hàm số tạo với chiều dương trục hoành một góc $45^0$.                               $ y=\frac{1}{3} x^3 -\frac{5}{2} x^2 +7x -4  $

Thuộc chủ đề:Hàm số Tag với:Tiếp tuyến của đồ thị

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính




Baitap.net (c) 2019 - Bài Tập Toán Lý Hóa Sinh Anh -Giới thiệu - Liên hệ - Bản quyền - Sitemap - Bảo mật
Học Toán - Học Trắc nghiệm - Ebook Toán - Học Giải - Mon Toán - Giai bai tap hay - Lop 12 - - HocZ Net -