• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar

Bài Tập Toán Lý Hóa Sinh Tiếng Anh

Tập hợp bài tập môn Toán, Lý, Hóa, Sinh, Tiếng Anh, Sử, Địa, GDCD, Văn Phổ thông

  • Môn Toán
  • Môn Lý
  • Môn Hóa
  • Môn Sinh
  • Môn Anh
  • Môn Văn
  • Môn Sử
  • Môn Địa
  • Môn GDCD
  • Môn Công nghệ
  • Môn Tin học

Cho hàm số:  $y = \frac{{{x^2}cos\alpha  – 2x + cos\alpha }}{{{x^2} – 2xcos \alpha  + 1}}$Với tham số $\alpha  \in (0; \pi)$. Chứng minh rằng với mọi giá trị của $x$, ta đều có $ – 1 \le y \le 1$

08/01/2020 by Baitap.net Để lại bình luận

Cho hàm số:  $y = \frac{{{x^2}cos\alpha  – 2x + cos\alpha }}{{{x^2} – 2xcos \alpha  + 1}}$Với tham số $\alpha  \in (0; \pi)$. Chứng minh rằng với mọi giá trị của $x$, ta đều có $ – 1 \le y \le 1$

Bài giải chi tiết:

Ta có:  $y = \frac{{{x^2}c{\rm{os}}\alpha  – 2x + c{\rm{os}}\alpha }}{{{{\left( {x – c{\rm{os}}\alpha } \right)}^2} + {{\sin }^2}\alpha }}$
Do $\alpha  \in (0{\rm{ ; }}\pi {\rm{)}}$ nên $\sin \alpha  > 0{\rm{ }} \Rightarrow $ hàm số luôn xác định với mọi $x$ $ \Rightarrow $ phương trình (ẩn số là $x$)
      $y({x^2} – 2x\cos \alpha  + 1) = {x^2}c{\rm{os}}\alpha  – 2x + c{\rm{os}}\alpha $
$ \Leftrightarrow (y – c{\rm{os}}\alpha ){x^2} – 3(y\cos \alpha  – 1)x + (y – c{\rm{os}}\alpha ) = 0$ có nghiệm

a) $y = c{\rm{os}}\alpha $; do $\alpha  \in (0{\rm{ ; }}\pi {\rm{)}}$nên $c{\rm{os}}\alpha \ne \pm {\rm{1 }} \Rightarrow {\rm{x}} = 0$
Từ đó ta có $\left| y \right| = \left| {c{\rm{os}}\alpha } \right|
b) $y \ne c{\rm{os}}\alpha $:
$\Delta ‘ = {(y\cos \alpha  – 1)^2} – {(y – c{\rm{os}}\alpha {\rm{)}}^2} \ge 0{\rm{ }} \Leftrightarrow {\rm{ (y}} – 1{)^2}({\cos ^2}\alpha  – 1) \ge 0$
Lại do $\alpha  \in (0{\rm{ ; }}\pi {\rm{)}}$ nên $c{\rm{o}}{{\rm{s}}^2}\alpha  – 1 Từ đó:  ${y^2} – 1 \le 0 \Leftrightarrow \left| y \right| \le 1$

Câu trắc nghiệm liên quan:

  1. Xác định tính tuần hoàn và tìm chu kì (nếu có) của các hàm số sau:a) $y=\tan (2x-\frac{\pi}{4} )$                         b) $y= 2\sin^2(3x+\frac{\pi}{5} )$
  2. Cho hàm số $f(x)$ xác định và có đạo hàm mọi cấp trên $R$, và thỏa mãn điều kiện     $f'( {\frac{{x + y}}{2}} ) = \frac{{f(y) – f(x)}}{{y – x}},\forall x, y \in  R,x \ne y$        (1)Chứng minh:  $f(x) = f''(0)\frac{{{x^2}}}{2} + f'(0)x + f(0),\forall x \in R$
  3. Cho hàm số:  $y = 4x^3 + mx$a) Tùy theo các giá trị của $a$, hãy xét sự biến thiên của hàm sốb) Xác định $m$ để $\left| y \right| \le 1$ khi $\left| x \right| \le 1$
  4.   Bỏ dấu trị tuyệt đối trong biểu thức của \(f(x)\)a) \(f(x)=|-3x+2|\)                                      b) $ f(x)=|2x+5||3-4x|$
  5. Cho $a,b$ là các số thực cho trước. Xác định tất cả các hàm số $f(x)$ thỏa mãn mỗi một tính chất sau đây:a) $f(a-x)=f(x)$, với mọi $x\in R$b) $f(a-x)+f(x)=b$, với mọi $x\in R$
  6. Cho các hàm số : $f(x) = \frac{x}{{1 + \left| x \right|}},g(x) = \frac{x}{{1 – \left| x \right|}}$$    a)$ Tìm miền xác định và miền giá trị của $f(x) $ và $g(x).$$  b)$ Tìm $g_0f$ và $f_0g.$
  7. Xét hàm số $x  \rightarrow y = f(x) = \frac{{x – 1}}{x}$$a)$ Xác định tập hợp $E  \subset $ $R$ sao cho $f$ là một song ánh từ $E$ vào $E..$$b)$ Xác định hàm số ngược $f^{-1}.$
  8. Cho hàm số $f(x)=\frac{4^x}{4^x+2} $ Chứng minh rằng nếu $a+b=1$ thì $f(a)+f(b)=1$
  9. Cho $a, c$ là hai hằng số; $f(x)$ là một hàm số xác định trên $R$ và thỏa mãn điều kiện$af(x) = f'(x),\forall x \in R$;  $f(0) = c$.  Chứng minh rằng $f(x) = ce^{ax},\forall x \in R$.Từ kết quả đó hãy tìm hàm $g(x)$ nếu biết:  $\int\limits_0^x g(t)dt = g(x),\forall x \in R $

Thuộc chủ đề:Hàm số Tag với:Tính chất của hàm số

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

Bài viết mới

  • Cho hình hộp chữ nhật đáy là hình vuông cạnh đáy bằng $2r$, chiều cao là $3,5r$. Hỏi có thể xếp vào đó 13 quả cầu bán kính $r$ hay không? 15/02/2021
  • Tìm tất cả số phức $z$, biết rằng $z^2=|z|^2+\overline{z}$. 15/02/2021
  • 1, Cho số phức $\alpha$. Chứng minh rằng với mọi số phức z, ta có:                 $z\overline{z} +\overline{\alpha}z+\alpha \overline{z} =|z+\alpha|^2-\alpha \overline{\alpha}  $ 2, Từ câu 1. hãy xác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số z thỏa mãn $z\overline{z} +\overline{\alpha}z+\alpha \overline{z} +k=0$, trong đó $\alpha$ là số phức cho trước, k là số thực cho  trước 15/02/2021
  • Tìm căn bậc hai của số phức $-8+6i$ 13/02/2021
  • Chứng minh rằng nếu z là một căn bậc hai của số phức w thì $|z|=\sqrt{|w|} $ 13/02/2021




Baitap.net (c) 2019 - Bài Tập Toán Lý Hóa Sinh Anh -Giới thiệu - Liên hệ - Bản quyền - Sitemap - Bảo mật
Học Toán - Học Trắc nghiệm - Ebook Toán - Học Giải - Mon Toán - Giai bai tap hay - Lop 12 - - HocZ Net -