• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar

Bài Tập Toán Lý Hóa Sinh Tiếng Anh

Tập hợp bài tập môn Toán, Lý, Hóa, Sinh, Tiếng Anh, Sử, Địa, GDCD, Văn Phổ thông

  • Môn Toán
  • Môn Lý
  • Môn Hóa
  • Môn Sinh
  • Môn Anh
  • Môn Văn
  • Môn Sử
  • Môn Địa
  • Môn GDCD
  • Môn Công nghệ
  • Môn Tin học

Cho hàm số: $y = f(x) = \frac{x^2 – 2mx + m + 2}{x – m}$$1.$ Với giá trị nào của $m$ thì hàm số đồng biến với mọi $x > 1.$$2.$ Khảo sát sự biến thiên và vẽ đồ thị hàm số ứng với $m = 1.$$3.$ Biện luận theo $a$ số nghiệm của phương trình: $\frac{{x^2 – 2|x| + 3}}{|x| – 1} = a$

08/01/2020 by Baitap.net Để lại bình luận

Cho hàm số: $y = f(x) = \frac{x^2 – 2mx + m + 2}{x – m}$$1.$ Với giá trị nào của $m$ thì hàm số đồng biến với mọi $x > 1.$$2.$ Khảo sát sự biến thiên và vẽ đồ thị hàm số ứng với $m = 1.$$3.$ Biện luận theo $a$ số nghiệm của phương trình: $\frac{{x^2 – 2|x| + 3}}{|x| – 1} = a$

Bài giải chi tiết:

$1.$ $y^/=\frac{x^2-2mx+2m^2-m-2}{(x-m)^2} $ Hàm số đồng biến $\forall  x>1$
$\Leftrightarrow  y^/\geq  0,\forall  x>1\Leftrightarrow  \begin{cases}\varphi(x)=x^2-2mx+2m^2-m-2\geq  0,\forall  x>1 \\ x\neq  m,\forall  x>1      \Leftrightarrow  m\leq  1      (a)\end{cases} $
$\varphi(x)\geq  0,\forall  x>1\Leftrightarrow  \left[ \begin{array}{l}\Delta ‘=m^2-(2m^2-m-2)=-m^2+m+2\leq  0\\\begin{cases}\Delta ‘=-m^2+m+2>0 \\\varphi (1)=2m^2-3m-1\geq  0 \\\frac{x_1+x_2}{2}=m$\Leftrightarrow  m\leq  \frac{3-\sqrt{17} }{4};m\geq  2   (b) $
Từ $(a)$ và $(b)\Rightarrow  $ ĐS : $m\leq  \frac{3-\sqrt{17} }{4}$
$2.$ Xin dành cho bạn đọc. 
$3.$ Chú ý rằng $x_0$ là $1$ nghiệm của phương trình $\Leftrightarrow -x_0$ cũng là nghiệm, do đó chỉ cần xét số nghiệm $\geq  0$ của phương trình ra có thể suy ra ngay số nghiệm của phương trình.Với $x\geq  0$ thì phương trình trở thành $\frac{x^2-2x+3}{x-1} =a$, do đó số nghiệm $\geq  0$ của phương trình đã cho đúng bằng số giao điểm của đường thẳng $y=a$ với phần bên phải trục tung của đồ thị.Từ đó  ta có:
– Nếu $\left[ \begin{array}{l}a- Nếu $a=-3$ thì phương trình có nghiệm duy nhất
– Nếu $-3– Nếu $a>2\sqrt{2} $ thì phương trình có $4$ nghiệm phân biệt

Câu trắc nghiệm liên quan:

  1. Cho $f(x)=\sqrt{1+2 \cos x }+\sqrt{1+2 \sin x } . $  Tìm $max  f(x) , min  f(x). $
  2. Chứng minh rằng phương trình : $ (4x-3) \log_{2010}x + \frac{2x^2-3x+1}{x\ln 2010} = 0$ có nghiệm trên $\left ( \frac{1}{2} ;1 \right )$  
  3. $y =f(x) \frac{x^2 – 4x + 5}{x – 2}$$1$. Khảo sát sự biến thiên và vẽ đồ thị hàm số đã cho.$2$. Dựa vào đồ thị hàm số trên, biện luận theo $m$ số nghiệm của phương trình:                    ${x^2} – (4 + m)\left| x \right| + 5 + 2m = 0$
  4. Tìm giá trị lớn nhất và nhỏ nhất của hàm số $y=\frac{\ln^2 x}{x}$ trên đoạn $[1;e^3]$.
  5. Cho hàm số: $y = x + 1 + \frac{1}{x – 1}$1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số.2) Từ đồ thị trên, hãy suy ra số nghiệm $x \in \left( {0 ; \frac{\pi }{2}} \right)$ của phương trình $1+\sin x+\cos x+\frac{1}{2}(\tan x + \cot x +\frac{1}{\sin x}+\frac{1}{\cos x})=m$tùy theo giá trị của tham số $m$
  6. Tìm giá trị lớn nhất và nhỏ nhất của hàm số:$1/\,\,\,\,f(x) = \left| {{x^2} + 2x – 3} \right| + \frac{3}{2}\ln x$      trên đoạn $\left[ {\frac{1}{2},\,4} \right]$$2/\,\,\,\,\,f(x) = \left| {{x^2} + x – 2} \right| – \ln \frac{1}{x}$       trên đoạn $\left[ {\frac{1}{2},\,2} \right]$
  7. Cho $y=\sin ^3 x – \cos ^3x.$  Tìm $max  y , min  y.$
  8. Chứng minh rằng:$\frac{1}{1+(n+1)^{2}}
  9. Cho hàm số :  $y=1+\cos x + \frac{ 1}{ 2} \cos 2x + \frac{ 1}{ 3} \cos 3x.$ Tìm $max  y , min  y.$

Thuộc chủ đề:Hàm số Tag với:Ứng dụng hàm số vào giải toán

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính




Baitap.net (c) 2019 - Bài Tập Toán Lý Hóa Sinh Anh -Giới thiệu - Liên hệ - Bản quyền - Sitemap - Bảo mật
Học Toán - Học Trắc nghiệm - Ebook Toán - Học Giải - Mon Toán - Giai bai tap hay - Lop 12 - - HocZ Net -