• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar

Bài Tập Toán Lý Hóa Sinh Tiếng Anh

Tập hợp bài tập môn Toán, Lý, Hóa, Sinh, Tiếng Anh, Sử, Địa, GDCD, Văn Phổ thông

  • Môn Toán
  • Môn Lý
  • Môn Hóa
  • Môn Sinh
  • Môn Anh
  • Môn Văn
  • Môn Sử
  • Môn Địa
  • Môn GDCD
  • Môn Công nghệ
  • Môn Tin học

Cho hàm số $y = x^3 + (1 – 2m)x^2 + (2 – m)x + m + 2 (C)$. Tìm m để hàm số có CĐ, CT thỏa mãn $x_{CT} < 2$

09/01/2020 by Baitap.net Để lại bình luận

Cho hàm số $y = x^3 + (1 – 2m)x^2 + (2 – m)x + m + 2 (C)$. Tìm m để hàm số có CĐ, CT thỏa mãn $x_{CT} < 2$ Bài giải chi tiết:

Ta có: \(y’ = 3{x^2} + 2(1 – 2m)x + (2 – m)\)

Hàm số có CĐ, CT \( \Leftrightarrow y’ = 0\) có 2 nghiệm phân biệt
\( \Leftrightarrow \Delta ‘ = {(1 – 2m)^2} – 3(2 – m) = 4{m^2} – m – 5 > 0 \Leftrightarrow \left[ \begin{array}{l}
m > \frac{5}{4}\\
m Với điều kiện (*), gọi \({x_1} BBT:

Hàm số đạt cực tiểu tại điểm \(x = {x_2} = \frac{{2m – 1 + \sqrt {4{m^2} – m – 5} }}{3} \Rightarrow {x_{CT}} = {x_2}\)
Do đó: \({x_{CT}}
\(\begin{array}{l}
\Leftrightarrow \sqrt {4{m^2} – m – 5} 0\\
4{m^2} – m – 5 Kết hợp với (*), kết luận các giá trị cần tìm của m là: \(m \in \left( { – \infty ; – 1} \right) \cup \left( {\frac{5}{4};2} \right)\)
 

Câu trắc nghiệm liên quan:

  1. Tìm tất cả các giá trị của tham số $m$ để đồ thị hàm số:                      $y = {x^2} – 3x + \frac{m}{x} + 3$ có $3$ điểm cực trị.Khi đó chứng minh rằng cả ba điểm cực trị này đều nằm trên đường cong : $y = 3(x-1)^2$
  2. Cho hàm số: $y = x^4 – 2mx^2 + 2m + m^4$$1.$ Với những giá trị nào của $m$ thì hàm số có cực đại và cực tiểu? Đồng thời các điểm cực đại và cực tiểu lập thành một tam giác đều.$2.$ Khảo sát sự biến thiên và vẽ đồ thị hàm số ứng với $m = 1.$
  3. Cho hàm số:  $ y = mx^3 – 3mx^2 + (2m + 1)x + 3 – m  (C_m) $ Tìm tất cả các giá trị của $m$ sao cho hàm số có cực đại, cực tiểu. Chứng minh rằng khi đó đường thẳng nối hai điểm cực đại, cực tiểu của  $ (C_m) $  luôn đi qua một điểm cố định.
  4. Cho hàm số       $y = \frac{{2{x^2} – 3x + m}}{{x – m}}$            (1)1)    Xác định tham số $m$ để đồ thị hàm số không có tiệm cận đứng. Vẽ đồ thị hàm số trong trường hợp đó.2) Tìm $m$ để hàm số (1) có cực đại, cực tiểu thỏa mãn điều kiện:  $| {{y_{CD}} – {y_{CT}}} | > 8$3) Giả sử $m \ne 0$ và $m \ne 1$. Chứng minh rằng tiếp tuyến của (1) tại giao điểm của nó với trục tung luôn cắt tiệm cận đứng tại điểm có tung độ bằng 1
  5. Cho hàm số $f(x) = \frac{1}{3}x^3 – \frac{1}{2}(\sin a + \cos a){x^2} + \frac{3\sin 2a}{4}x$. Tìm a để hàm số đạt cực trị tại $x_1,x_2$ thỏa mãn điều kiện $x_1 + x_2 = x_1^2 + x_2^2$
  6. Cho hàm số: $y = 2{x^3} – 3(2m + 1){x^2} + 6m(m + 1)x + 1\,\,\,      (1)$$1.$ Khảo sát hàm số $(1)$ khi $m = 1.$$2.$ Chứng minh rằng với mọi $m$, hàm số ($1$) luôn đạt cực trị tại $x_1; x_2$ với $x_2 – x_1$ không phụ thuộc $m.$
  7.  Cho hàm số   $y = \frac{{{x^2} + 2{m^2}x + {m^2}}}{{x + 1}}$1)    Với giá trị nào của $m$ thì hàm số có cực trị?2)    Xác định $m$ để đồ thị của hàm số có 2 điểm đối xứng với nhau qua gốc tọa độ.3)    Khảo sát sự biến thiên và vẽ đồ thị ứng với $m = 2$
  8. Cho hàm số  \(y = \frac{{3x – 1}}{{x – 3}}\)$1.$ Khảo sát sự biến thiên và vẽ đồ thị của hàm số$2.$ Tìm giá trị lớn nhất, nhỏ nhất của hàm số đã cho khi  \(0 \le x \le 2\)
  9. Cho hàm số: $y = \frac{{x^2 + (m + 1)x – m + 1}}{x – m}$$1.$ Khảo sát sự biến thiên và vẽ đồ thị hàm số ứng với $m = 2.$$2.$ Chứng minh rằng tích các khoảng cách từ một điểm tùy ý thuộc đồ thị hàm số (với $m = 2$ ở câu trên) tới hai đường tiệm cận luôn bằng một hằng số.$3.$ Với giá trị nào của $m$ thì hàm số đã cho có cực đại, cực tiểu đồng thời giá trị cực đại và giá trị cực tiểu cùng dấu.

Thuộc chủ đề:Hàm số Tag với:Cực trị của hàm số

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

Bài viết mới

  • Cho hình hộp chữ nhật đáy là hình vuông cạnh đáy bằng $2r$, chiều cao là $3,5r$. Hỏi có thể xếp vào đó 13 quả cầu bán kính $r$ hay không? 15/02/2021
  • Tìm tất cả số phức $z$, biết rằng $z^2=|z|^2+\overline{z}$. 15/02/2021
  • 1, Cho số phức $\alpha$. Chứng minh rằng với mọi số phức z, ta có:                 $z\overline{z} +\overline{\alpha}z+\alpha \overline{z} =|z+\alpha|^2-\alpha \overline{\alpha}  $ 2, Từ câu 1. hãy xác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số z thỏa mãn $z\overline{z} +\overline{\alpha}z+\alpha \overline{z} +k=0$, trong đó $\alpha$ là số phức cho trước, k là số thực cho  trước 15/02/2021
  • Tìm căn bậc hai của số phức $-8+6i$ 13/02/2021
  • Chứng minh rằng nếu z là một căn bậc hai của số phức w thì $|z|=\sqrt{|w|} $ 13/02/2021




Baitap.net (c) 2019 - Bài Tập Toán Lý Hóa Sinh Anh -Giới thiệu - Liên hệ - Bản quyền - Sitemap - Bảo mật
Học Toán - Học Trắc nghiệm - Ebook Toán - Học Giải - Mon Toán - Giai bai tap hay - Lop 12 - - HocZ Net -