• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar

Bài Tập Toán Lý Hóa Sinh Tiếng Anh

Tập hợp bài tập môn Toán, Lý, Hóa, Sinh, Tiếng Anh, Sử, Địa, GDCD, Văn Phổ thông

  • Môn Toán
  • Môn Lý
  • Môn Hóa
  • Môn Sinh
  • Môn Anh
  • Môn Văn
  • Môn Sử
  • Môn Địa
  • Môn GDCD
  • Môn Công nghệ
  • Môn Tin học

 Cho hàm số: $y = {x^3} – 3x\,\,(1)$$1$. Khảo sát hàm số ($1).$$2$. Chứng minh rằng khi $m$ thay đổi, đường thẳng cho bởi phương trình $y = m(x + 1) + 2$ luôn cắt đồ thị hàm số ($1$) tại một điểm $A$ cố định.Hãy xác định các giá trị của $m$ để đường thẳng cắt đồ thị hàm số ($1$) tại $3$ điểm $A, B, C$ khác nhau sao cho tiếp tuyến với đồ thị tại $B$ và $C$ vuông góc với nhau.

16/01/2020 by Baitap.net Để lại bình luận

 Cho hàm số: $y = {x^3} – 3x\,\,(1)$$1$. Khảo sát hàm số ($1).$$2$. Chứng minh rằng khi $m$ thay đổi, đường thẳng cho bởi phương trình $y = m(x + 1) + 2$ luôn cắt đồ thị hàm số ($1$) tại một điểm $A$ cố định.Hãy xác định các giá trị của $m$ để đường thẳng cắt đồ thị hàm số ($1$) tại $3$ điểm $A, B, C$ khác nhau sao cho tiếp tuyến với đồ thị tại $B$ và $C$ vuông góc với nhau.

Bài giải chi tiết:

$1.$ Bạn đọc tự giải
$2.$ Xét phương trình $x^3-3x=m(x+1)+2$
$\Leftrightarrow  (x+1)(x^2-x-2-m)=0           (2)$
Phương trình luôn có nghiệm $x=-1$ do đó đường thẳng luôn cắt đồ thị tại điểm $A(-1,2)$cố định
Với $x\neq  -1$ từ $(2)$ ta có $x^2-x-2-m        (3)$
do đó đường thẳng cắt đồ thị hàm số $(1)$ tại $3$ điểm phân biệt khi và chỉ khi phương trình $3$ có $2$ nghiệm phân biệt khác $-1\Leftrightarrow $ điều kiện$ \begin{cases}\Delta>0 \\ f(-1)\neq  0 \end{cases} $
+ $\Delta >0\Leftrightarrow  m>-9/4$
+ $f(-1)=-m\neq  0$
kết hợp ta được $m>-9/4$ với $m\neq  0          (4)$
Ta có : $y^/=3x^2-3$
Tiếp tuyế ntại $B,C$ vuông góc với nhau khi và chỉ khi $y^'(x_B).y^/(x_C)=-1$
$\Leftrightarrow  9(x_1x_2)^2-9[(x_1+x_2)^2-2x_1x_2]+10=0          (5)$
Theo định lí Vi-ét ta có : $\begin{cases}x_1+x_2=1 \\ x_1x_2=-2-m \end{cases} $
Thay vào $(5)$ ta được $9(2+m)^2-9[1+2(2+m)]+10=0$
ĐS : $m=\frac{-3\pm 2\sqrt{2} }{3} $

Câu trắc nghiệm liên quan:

  1. Cho hàm số:  $y = \frac{x – 2}{x + 1}$.1)    Khảo sát sự biến thiên và vẽ đồ thị hàm số.2)    $M$ là một điểm có hoành đố $a \ne  – 1$, và thuộc đồ thị. Viết phương trình tiếp tuyến của đồ thị tại điểm $M$.3)    Tính khoảng cách từ điểm $I(-1; 1)$ đến tiếp tuyến đó. Xác định $a$ để khoảng cách ấy là lớn nhất
  2. Xem hàm số   $y = \frac{{{x^2} – 3x + 4}}{{2x – 2}}$1)    Khảo sát sự biến thiên và vẽ đồ thị của hàm số.2)    $M$ là một điểm tùy ý thuộc đồ thị.Tiếp tuyến của đồ thị tại $M$ cắt tiệm cận đứng và tiệm cận xiên tại $A$ và $B$. Chứng tỏ rằng $M$ là trung điểm của đoạn $AB$, và tam giác $IAB$, với $I$ là giao điểm của hai tiệm cận, có diện tích không phụ thuộc vào $M$.3)    Tìm trên đồ thị hai điểm đối xứng với nhau qua đường thẳng $y = x$
  3. Viết phương trình tiếp tuyến của đồ thị  $(C):y = x^3 -3x^2 + 2 $  biết tiếp tuyến đó vuông góc với đường thẳng:  $ 5y – 3x + 4 = 0 $ .
  4. Cho hàm số: $y = \frac{1}{3}{x^3} – m{x^2} + (2m – 1)x – m + 2\,\,\,(1)$$1.$ Khảo sát và vẽ đồ thị ($C$) của hàm số ($1$) ứng với $m = 2.$$2.$ Qua điểm $A\left( {4/9;4/3} \right)$kẻ được mấy tiếp tuyến tới đồ thị ($C)$? Viết phương trình tiếp tuyến ấy.$3.$ Với giá trị nào của $m$ thì hàm số ($1$) nghịch biến trên khoảng ($-2;0$).
  5. Cho parabol $y=x^2+x   (P)$. Viết phương trình tiếp tuyến của $(P)$ tại điểm có hoành độ $x=2$
  6. Cho hàm số $y = \frac{2x – 4}{x + 1}  (C)$. Gọi $M$ là một điểm bất kì trên đồ thị $(C)$, tiếp tuyến tại $M$ cắt các tiệm cận của $(C)$ tại $A, B$. Chứng minh rằng diện tích tam giác $ABI$ ($I$ là giao của hai tiệm cận) không phụ thuộc vào vị trí của $M$.
  7. Cho hàm số:$y = \frac{ – 2x + 1}{x + 2}\,$$1$. Khảo sát sự biến thiên và vẽ đồ thị của hàm số. $2$. Viết phương trình tiếp tuyến với đồ thị hàm số song song với đường thẳng $y = -x$
  8. Cho hai hàm số:  ${y_1} = {x^2} – mx – 2$ và ${y_2} = \frac{{2 – mx}}{{x – 1}}$Chứng minh với $\forall m$ đồ thị của chúng luôn đi qua cùng một điểm cố định. Tìm $m$ để tại điểm cố định đó hai đồ thị tiếp xúc nhau, tìm phương trình tiếp tuyến chung
  9. a) Đồ thị của hàm số $y=\frac{1}{2} x^4 – x $ có tiếp tuyến là $y=-\frac{3}{4} x -\frac{3}{32}  $. Tìm tiếp điểm.b) Tại điểm nào thì tiếp tuyến với đồ thị hàm số tạo với chiều dương trục hoành một góc $45^0$.                               $ y=\frac{1}{3} x^3 -\frac{5}{2} x^2 +7x -4  $

Thuộc chủ đề:Hàm số Tag với:Tiếp tuyến của đồ thị

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính




Baitap.net (c) 2019 - Bài Tập Toán Lý Hóa Sinh Anh -Giới thiệu - Liên hệ - Bản quyền - Sitemap - Bảo mật
Học Toán - Học Trắc nghiệm - Ebook Toán - Học Giải - Mon Toán - Giai bai tap hay - Lop 12 - - HocZ Net -