Cho hàm số \(y = – {x^4} + 2m{x^2}\left( {{C_m}} \right)\)$1$. Khảo sát hàm số \(\left( {{C_m}} \right)\) với \(m = 1\)$2$. Viết phương trình tiếp tuyến của đồ thị hàm số vừa khảo sát tại điểm \(A\left( {\sqrt 2 ,\,0} \right)\)$3$. Hãy xác định m để hàm số \(\left( {{C_m}} \right)\) có ba cực trị.
Bài giải chi tiết:
$1$. Bạn đọc tự giải.
$2$. Với \(m = 1\), có \(y = f\left( x \right) = – {x^4} + 2{x^2},\,f’\left( x \right) = – 4{x^3} + 4x\)
\(f’\left( {\sqrt 2 } \right) = – 4\sqrt 2 \). Tiếp tuyến tại điểm $A$ \(\left( {\sqrt 2 ,\,0} \right) \in (C)\) có phương trình
\(y = – 4\sqrt 2 .\left( {x – \sqrt 2 } \right) + 0 \Leftrightarrow y = – 4\sqrt 2 \left( {x – \sqrt 2 } \right)\)
$3$. \(y’ = – 4{x^3} + 4mx = – 4x\left( {{x^2} – m} \right)\)
Nếu \(m \le 0\) thì \({x^2} – m \ge 0,\,\,\forall x \Rightarrow y’\)
luôn cùng dấu với \( – 4x \Rightarrow y’\) đổi dấu đúng một lần.
Suy ra hàm số có một cực trị duy nhất.
Nếu \(m > 0\) thì $y’ $ có $3$ nghiệm phân biệt \({x_1} = – \sqrt m ,\,\,{x_2} = 0,\,\,{x_3} = \sqrt m \)
Ta có bảng biến thiên như hình vẽ
Suy ra hàm số có $3$ cực trị.
Vậy \(\left( {{C_m}} \right)\) có $3$ cực trị \( \Leftrightarrow m > 0\).
Câu trắc nghiệm liên quan:
- Tìm tất cả các giá trị của tham số $m$ để đồ thị hàm số: $y = {x^2} – 3x + \frac{m}{x} + 3$ có $3$ điểm cực trị.Khi đó chứng minh rằng cả ba điểm cực trị này đều nằm trên đường cong : $y = 3(x-1)^2$
- Cho hàm số: $y = x^4 – 2mx^2 + 2m + m^4$$1.$ Với những giá trị nào của $m$ thì hàm số có cực đại và cực tiểu? Đồng thời các điểm cực đại và cực tiểu lập thành một tam giác đều.$2.$ Khảo sát sự biến thiên và vẽ đồ thị hàm số ứng với $m = 1.$
- Cho hàm số: $ y = mx^3 – 3mx^2 + (2m + 1)x + 3 – m (C_m) $ Tìm tất cả các giá trị của $m$ sao cho hàm số có cực đại, cực tiểu. Chứng minh rằng khi đó đường thẳng nối hai điểm cực đại, cực tiểu của $ (C_m) $ luôn đi qua một điểm cố định.
- Cho hàm số $y = \frac{{2{x^2} – 3x + m}}{{x – m}}$ (1)1) Xác định tham số $m$ để đồ thị hàm số không có tiệm cận đứng. Vẽ đồ thị hàm số trong trường hợp đó.2) Tìm $m$ để hàm số (1) có cực đại, cực tiểu thỏa mãn điều kiện: $| {{y_{CD}} – {y_{CT}}} | > 8$3) Giả sử $m \ne 0$ và $m \ne 1$. Chứng minh rằng tiếp tuyến của (1) tại giao điểm của nó với trục tung luôn cắt tiệm cận đứng tại điểm có tung độ bằng 1
- Cho hàm số $f(x) = \frac{1}{3}x^3 – \frac{1}{2}(\sin a + \cos a){x^2} + \frac{3\sin 2a}{4}x$. Tìm a để hàm số đạt cực trị tại $x_1,x_2$ thỏa mãn điều kiện $x_1 + x_2 = x_1^2 + x_2^2$
- Cho hàm số: $y = 2{x^3} – 3(2m + 1){x^2} + 6m(m + 1)x + 1\,\,\, (1)$$1.$ Khảo sát hàm số $(1)$ khi $m = 1.$$2.$ Chứng minh rằng với mọi $m$, hàm số ($1$) luôn đạt cực trị tại $x_1; x_2$ với $x_2 – x_1$ không phụ thuộc $m.$
- Cho hàm số $y = \frac{{{x^2} + 2{m^2}x + {m^2}}}{{x + 1}}$1) Với giá trị nào của $m$ thì hàm số có cực trị?2) Xác định $m$ để đồ thị của hàm số có 2 điểm đối xứng với nhau qua gốc tọa độ.3) Khảo sát sự biến thiên và vẽ đồ thị ứng với $m = 2$
- Cho hàm số \(y = \frac{{3x – 1}}{{x – 3}}\)$1.$ Khảo sát sự biến thiên và vẽ đồ thị của hàm số$2.$ Tìm giá trị lớn nhất, nhỏ nhất của hàm số đã cho khi \(0 \le x \le 2\)
- Cho hàm số: $y = \frac{{x^2 + (m + 1)x – m + 1}}{x – m}$$1.$ Khảo sát sự biến thiên và vẽ đồ thị hàm số ứng với $m = 2.$$2.$ Chứng minh rằng tích các khoảng cách từ một điểm tùy ý thuộc đồ thị hàm số (với $m = 2$ ở câu trên) tới hai đường tiệm cận luôn bằng một hằng số.$3.$ Với giá trị nào của $m$ thì hàm số đã cho có cực đại, cực tiểu đồng thời giá trị cực đại và giá trị cực tiểu cùng dấu.
Trả lời