• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar

Bài Tập Toán Lý Hóa Sinh Tiếng Anh

Tập hợp bài tập môn Toán, Lý, Hóa, Sinh, Tiếng Anh, Sử, Địa, GDCD, Văn Phổ thông

  • Môn Toán
  • Môn Lý
  • Môn Hóa
  • Môn Sinh
  • Môn Anh
  • Môn Văn
  • Môn Sử
  • Môn Địa
  • Môn GDCD
  • Môn Công nghệ
  • Môn Tin học

Cho hàm số \(y=f(x)\) có đạo hàm với mọi \(x\) thuộc miền xác định. Chứng minh:a) Nếu \(f(x)\) là hàm số chẵn thì \(f'(x)\) là hàm số lẻ.b) Nếu \(f(x)\) là hàm số lẻ thì \(f'(x)\) là hàm số chẵn.

18/01/2020 by Baitap.net Để lại bình luận

Cho hàm số \(y=f(x)\) có đạo hàm với mọi \(x\) thuộc miền xác định. Chứng minh:a) Nếu \(f(x)\) là hàm số chẵn thì \(f'(x)\) là hàm số lẻ.b) Nếu \(f(x)\) là hàm số lẻ thì \(f'(x)\) là hàm số chẵn.

Bài giải chi tiết:

a) Ta có: \(f'(-x)=\mathop {\lim }\limits_{\Delta x \to 0}\frac{f(-x+\Delta x)-f(-x)}{\Delta x}\)(1)
Vì \(f(x)\) là hàm số chẵn nên \(f(-x+\Delta x)=f(x-\Delta x), f(-x)=f(x)\), do đó:
(1) \(\Leftrightarrow f'(-x)=\mathop {\lim }\limits_{\Delta x \to 0}\frac{f(x-\Delta x)-f(x)}{\Delta x}=-\mathop {\lim }\limits_{-\Delta x \to 0}\frac{f(x-\Delta x)-f(x)}{-\Delta x}=-f'(x)\)
 Vậy \(f'(x)\) là hàm số lẻ.
 b) 
Ta có: \(f'(-x)=\mathop {\lim }\limits_{\Delta x \to 0}\frac{f(-x+\Delta x)-f(-x)}{\Delta x}\)(1)
Vì \(f(x)\) là hàm số lẻ nên \(f(-x+\Delta x)=-f(x-\Delta x), f(-x)=-f(x)\), do đó:
(1) \(\Leftrightarrow f'(-x)=\mathop {\lim }\limits_{\Delta x \to 0}\frac{-f(x-\Delta x)+f(x)}{\Delta x}=\mathop {\lim }\limits_{-\Delta x \to 0}\frac{f(x-\Delta x)-f(x)}{-\Delta x}=f'(x)\)
 Vậy \(f'(x)\) là hàm số chẵn.

Câu trắc nghiệm liên quan:

  1. Cho $f(x)=x^{2}+3x+4$. Tính $f^{'}(2)$
  2. Tìm $a$ sao cho biểu thức:  $ A = \cos 2x – a . \sin ^2 x+ 2 \cos ^2 x $  không phụ thuộc $x$.
  3. Tìm đạo hàm của hàm số: $y=f(x)=\begin{cases}1                                        với  x=0 \\ \frac{1-\cos x}{x}             với  x \neq  0\end{cases}$
  4. Tính đạo hàm của các hàm số sau:a) $y = (3x – 2)\ln^2x$;                                 b) $y = \sqrt{x^2 +1 }\ln x^2$ c) $y = x . \ln \frac{1}{1+x} $;                                         d) $y = \frac{\ln (x^2 + 1)}{x} $
  5. Tính đạo hàm theo cấp đã cho của hàm số sau:$f(x)=\sin 3x$$f^{"}(-\frac{\pi}{2}),f^{"}(0),f^{"}(\frac{\pi}{18})?$
  6. Tính đạo hàm số cấp $n$ của hàm số:a) $y=\ln x$b) $y=\ln(x^2+x-2).$
  7. Cho $f(x)=x^3$ và $g(x)=4x^2+\cos\pi x$.  Tính $\frac{f'(1)}{g'(1)}$
  8. Tìm đạo hàm của các hàm số:a) \(y=\cos^{3}(x^{2}+1)\)b) \(y=\cot (3x^{2}+\frac{x}{2})\).
  9. Chứng minh rằng :$ n C^0_n – (n-1)C^1_n +(n-2)C^2_n-(n-3)C^3_n+…+(-1)^{n-1}C^{n-1}_n = 0, \forall n \in  N$

Thuộc chủ đề:Hàm số Tag với:Đạo hàm

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính




Baitap.net (c) 2019 - Bài Tập Toán Lý Hóa Sinh Anh -Giới thiệu - Liên hệ - Bản quyền - Sitemap - Bảo mật
Học Toán - Học Trắc nghiệm - Ebook Toán - Học Giải - Mon Toán - Giai bai tap hay - Lop 12 - - HocZ Net -