• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar

Bài Tập Toán Lý Hóa Sinh Tiếng Anh

Tập hợp bài tập môn Toán, Lý, Hóa, Sinh, Tiếng Anh, Sử, Địa, GDCD, Văn Phổ thông

  • Môn Toán
  • Môn Lý
  • Môn Hóa
  • Môn Sinh
  • Môn Anh
  • Môn Văn
  • Môn Sử
  • Môn Địa
  • Môn GDCD
  • Môn Công nghệ
  • Môn Tin học

Cho hình chóp tam giác $S.ABC, SA = x, BC = y$, các cạnh còn lại đều bằng $1$.$1$. Tính thể tích hình chóp theo $x, y.$$2.$ Với $x, y$ nào thì thể tích hình chóp lớn nhất?

17/11/2019 by Baitap.net

$1.$ Gọi $M$ và $N$ là trung điểm $SA$ và $BC$.Do giả thiết, $\Delta ABC$ và $CAS$ cân ở $B$ và $C$ nên $BM \bot SA, CM\bot SA\Rightarrow SA\bot(BMC),$ hình chóp có thể tích
$V=\frac{1}{3}SA.dtBMC=\frac{x}{3}.dtBMC$
Dễ thấy $MB=MC=\sqrt{1-\frac{x^2}{4}}$ nên $\Delta BMC$ cânở $M$ và $MN\bot BC,$
$MN=\sqrt{MC^2-(\frac{y}{2})^2}=\sqrt{1-\frac{x^2+y^2}{4}}$
$dtMBC=\frac{1}{2}y\sqrt{1-\frac{x^2+y^2}{4}}$ , $V=\frac{xy}{6}\sqrt{1-\frac{x^2+y^2}{4}}$
$2.$ Ta có : $ \frac{x^2+y^2}{4}\geq \frac{2xy}{4}=\frac{xy}{2}$
$V\leq \frac{xy}{6}.\sqrt{1-\frac{xy}{2}}=\frac{1}{6}\sqrt{(xy)^2.(\frac{2-xy}{2})}$
$V\leq \frac{1}{6}.\sqrt{2.\frac{xy}{2}.\frac{xy}{2}.(2-xy)}\leq \frac{1}{6}\sqrt{2(\frac{\frac{xy}{2}+\frac{xy}{2}+2-xy}{3})^3}$
$\Rightarrow V\leq \frac{1}{6}.\sqrt{\frac{16}{27}}=\frac{2\sqrt{3}}{27}$
$V=\frac{2\sqrt{3}}{27}\Leftrightarrow \begin{cases}x^2+y^2=2xy \\ xy/2=2-xy \end{cases}\Leftrightarrow x=y=\frac{2}{\sqrt{3}}$
Kết luận : Với $x=y=\frac{2}{\sqrt{3}} $ thì $V$  lớn nhất

Câu trắc nghiệm liên quan:

  1. Cho hàm số $y=\frac{x^{2}+2x+3}{x^{2}+2}$. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số.
  2. Tìm giá trị lớn nhất và nhỏ nhất của hàm số $y=\sqrt{1+\sin x}-3$
  3. Cho biểu thức $P$ = \(\cos A + \cos B + \cos C\). Trong đó $A, B, C$ là các góc của tam giác $ABC$ bất kì. Chứng minh rằng $P$ đạt giá trị lớn nhất nhưng không đạt giá trị nhỏ nhất.
  4. Trong các số thực $x, y, z$ thỏa mãn hệ thức \({\left( {x – 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 1} \right)^2} = 1\). Hãy tìm x, y, z để biểu thức \(|x + 2y + 3z – 8|\) đạt giá trị lớn nhất. Xác định giá trị đó.
  5. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y=\frac{4x+3}{x^{2}+1}$.
  6. Tìm giá trị lớn nhất và nhỏ nhất của hàm số: $y=sin^{6}x+cos^{6}x+asinxcosx$
  7.  Tìm giá trị lớn nhất và nhỏ nhất của hàm số \(y = \frac{{3{x^2} + 10x + 20}}{{{x^2} + 2x + 3}}\)
  8.   Tìm giá trị lớn nhất của hàm số: $y=[\frac{12x(x-a)}{x^2+36}]^\frac{3}{4}$
  9.   Xác định tham số $a,b$ sao cho hàm số $y=\frac{ax+b}{x^2+1}$ đạt giá trị lớn nhất bằng $4$, giá trị nhỏ nhất bằng $-1$

Filed Under: Hàm số Tagged With: Giá trị lớn nhất - nhỏ nhất

Reader Interactions

Primary Sidebar




Bài viết mới

  • Cho $a,b,c \geq 1.$Hãy chứng minh:$1/\frac{1}{1+a^{2}}+\frac{1}{1+b^{2}}\geq \frac{2}{1+ab}$$2/\frac{1}{1+a^{3}}+\frac{1}{1+b^{3}}+\frac{1}{1+c^{3}}\geq \frac{3}{1+abc} $(Đây là dạng bất đẳng thức JenSen) 19/11/2019
  • Cho $ a,b,c>0$. Chứng minh a) Nếu $a>b$ thì $\frac{a}{b}>\frac{a+c}{b+c} $                          b) Nếu $ a 19/11/2019
  • Cho ba số dương $a,b,c$. Chứng minh rằng:   $\frac{a+b}{c}+\frac{b+c}{a}+\frac{a+c}{b}\geq 6$ 19/11/2019
  • Chứng minh rằng:   $\sin \frac{5\pi}{12}+\sin \frac{\pi}{12}>1$ 19/11/2019
  • Cho $a, b>0$. Chứng minh:a) $\frac{a}{b}+\frac{b}{a}\geq 2           (1)$ Dấu = chỉ xảy ra khi $a=b$.b) $\frac{1}{a}+\frac{1}{b}\geq \frac{4}{a+b}      (2)$ Dấu = chỉ xảy ra khi $a=b$. 19/11/2019

Baitap.net (c) 2019 - Giải Bài Tập Toán Lý Hóa Sinh Tiếng Anh và các môn khác
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Bảo mật - Học Toán - Học Trắc nghiệm - Ebook Toán - Học Giải - Trắc nghiệm Toán