• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar

Bài Tập Toán Lý Hóa Sinh Tiếng Anh

Tập hợp bài tập môn Toán, Lý, Hóa, Sinh, Tiếng Anh, Sử, Địa, GDCD, Văn Phổ thông

  • Môn Toán
  • Môn Lý
  • Môn Hóa
  • Môn Sinh
  • Môn Anh
  • Môn Văn
  • Môn Sử
  • Môn Địa
  • Môn GDCD
  • Môn Công nghệ
  • Môn Tin học

Cho $ m \in  N.$ Tìm giá trị nhỏ nhất của: $f(x) = \int\limits_{1}^{x}t^m.e^{2t} -2 \left ( \frac{x^{m+3}}{m+3} +\frac{x^{m+2}}{m+2}  \right ) , x\geq 1$

12/01/2020 by Baitap.net Để lại bình luận

Cho $ m \in  N.$ Tìm giá trị nhỏ nhất của: $f(x) = \int\limits_{1}^{x}t^m.e^{2t} -2 \left ( \frac{x^{m+3}}{m+3} +\frac{x^{m+2}}{m+2}  \right ) , x\geq 1$

Bài giải chi tiết:

Xét $ g(x) = e^{2x} – 2 (x^2 +x), x\geq 0$
      $ g'(x) = 2e^{2x} – 2 (2x + 1) = 2 (e^{2x} -2x-1)$
      $ g”(x) = 2 (2e^{2x} -2 ) = 4 (e^{2x}-1) \geq 0, \forall x \geq 0 $
$\Rightarrow g’ $ tăng trên $[0;+\infty  )    \Rightarrow    g'(x) \geq g'(0) = 0 , \forall x \geq 0 $
$\Rightarrow g$ tăng trên $[0;+\infty  )    \Rightarrow g(x) \geq g(0) = 1$
$\Rightarrow e^{2x} \geq 2(x^2 + x) + 1, \forall x  \geq 0$
$\Rightarrow x^me^{2x} \geq 2(x^{m+2} + x^{m+1})+x^m, \forall x \geq 0$
$\Rightarrow \int\limits_{1}^{x} t^me^{2t} \geq  \int\limits_{1}^{x} 2( t^{m+2}+t^{m+1})+t^mdt$
                    $= 2 \left ( \frac{x^{m+3}}{m+3} + \frac{x^{m+2}}{m+2}  \right )+\frac{x^{m+1}}{m+1}  – 2 \left ( \frac{1}{m+3}+\frac{1}{m+2}   \right )-\frac{1}{m+1} , \forall x \geq 1$
            $\Rightarrow f(x) \geq -2 \left ( \frac{1}{m+3}+ \frac{1}{m+2}   \right ) $
$\Rightarrow f(x) \geq -2\left ( \frac{1}{m+3}+ \frac{1}{m+2}   \right ), \forall x \geq 1$
Dấu $”=”  \Leftrightarrow   x=1$
Vậy : $\min_{x\geq 1}f(x)  = -\frac{2(2m+5)}{(m+2)(m+3)}.$ 

Câu trắc nghiệm liên quan:

  1. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm sốa) $f(x)=x^2 \ln x$ trên đoạn $[1;e].$b) $f(x)=x e^{-x}$ trên nửa khoảng $[0;\infty ).$
  2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số:   $f(x)=-x^2+2x+4$ trên đoạn $[2;4]$.
  3. Trong các nghiệm $(x,y)$ của bất phương trình : $\log _{x^2+y^2}(x+y)\geq 1$.  Hãy tìm nghiệm có tổng $x+2y$ lớn nhất.
  4. Cho hàm số $y=\frac{x^{2}+2x+3}{x^{2}+2}$. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số.
  5. Cho $n$ số ${a_1},{a_2},…,{a_n}$với ${a_1} < {a_2} < ... < {a_n}$. Tìm giá trị nhỏ nhất của hàm số $f(x) = \sum\limits_{i = 1}^n {|{x - {a_i}}| } $
  6. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm sốa) $y=\frac{\ln^2 x}{x} $ trên đoạn $[1;e^3].$b) $y=x^2e^{-x}$ trên đoạn $[0; \ln 8].$
  7.   Cho $a,b,c,d$ là bốn số thực thỏa mãn các điều kiện:          $\begin{cases}a^2+b^2+6=4(a+b) \\ c^2+d^2+64=12(c+d) \end{cases}$ Tìm GTLN, GTNN của biểu thức: $S=(a-c)^2+(b-d)^2$
  8. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số :         $y=\frac{3\sin x}{2+\cos x}$.
  9. Cho \(x^{2}+y^{2}=2\) (\(x,y>0\)). Tìm giá trị lớn nhất của \((x+y)xy\).

Thuộc chủ đề:Hàm số Tag với:Giá trị lớn nhất - nhỏ nhất

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

Bài viết mới

  • Cho hình hộp chữ nhật đáy là hình vuông cạnh đáy bằng $2r$, chiều cao là $3,5r$. Hỏi có thể xếp vào đó 13 quả cầu bán kính $r$ hay không? 15/02/2021
  • Tìm tất cả số phức $z$, biết rằng $z^2=|z|^2+\overline{z}$. 15/02/2021
  • 1, Cho số phức $\alpha$. Chứng minh rằng với mọi số phức z, ta có:                 $z\overline{z} +\overline{\alpha}z+\alpha \overline{z} =|z+\alpha|^2-\alpha \overline{\alpha}  $ 2, Từ câu 1. hãy xác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số z thỏa mãn $z\overline{z} +\overline{\alpha}z+\alpha \overline{z} +k=0$, trong đó $\alpha$ là số phức cho trước, k là số thực cho  trước 15/02/2021
  • Tìm căn bậc hai của số phức $-8+6i$ 13/02/2021
  • Chứng minh rằng nếu z là một căn bậc hai của số phức w thì $|z|=\sqrt{|w|} $ 13/02/2021




Baitap.net (c) 2019 - Bài Tập Toán Lý Hóa Sinh Anh -Giới thiệu - Liên hệ - Bản quyền - Sitemap - Bảo mật
Học Toán - Học Trắc nghiệm - Ebook Toán - Học Giải - Mon Toán - Giai bai tap hay - Lop 12 - - HocZ Net -