• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar

Bài Tập Toán Lý Hóa Sinh Tiếng Anh

Tập hợp bài tập môn Toán, Lý, Hóa, Sinh, Tiếng Anh, Sử, Địa, GDCD, Văn Phổ thông

  • Môn Toán
  • Môn Lý
  • Môn Hóa
  • Môn Sinh
  • Môn Anh
  • Môn Văn
  • Môn Sử
  • Môn Địa
  • Môn GDCD
  • Môn Công nghệ
  • Môn Tin học

Cho $p, q$ là các số tự nhiên lớn hơn 1. Tìm giá trị lớn nhất của hàm số                       $y=cos^pxsin^qx  (0\leq x\leq \frac{\pi}{2} )$

20/01/2020 by Baitap.net Để lại bình luận

Cho $p, q$ là các số tự nhiên lớn hơn 1. Tìm giá trị lớn nhất của hàm số                       $y=cos^pxsin^qx  (0\leq x\leq \frac{\pi}{2} )$

Bài giải chi tiết:

Ta có:
    ${y^2} = c{\rm{o}}{{\rm{s}}^{2p}}x{\sin ^{2q}}x = {(1 – {\sin ^2}x)^p}{\sin ^{2q}}x$
Đặt $t = {\sin ^2}x,{\rm{ t}} \in \left[ {0{\rm{ ; 1}}} \right]$ ta được
    ${y^2} = f(t) = {t^q}{(1 – t)^p},{\rm{ t}} \in \left[ {0{\rm{ ; 1}}} \right]$
Ta có $f'(t) = {t^{q – 1}}{(1 – t)^{p – 1}}\left[ {q – (p + q)t} \right]$.
    $f'(t) = 0 \Leftrightarrow t = 0,{\rm{ t}} = \frac{q}{{p + q}},t = 1$.
Bảng biến thiên của $f(t)$ là:

Suy ra    $\max f(t) = f\left( {\frac{q}{{p + q}}} \right) = \frac{{{p^p}{q^q}}}{{{{(p + q)}^{p + q}}}} = \max {y^2}$
Do $y \ge 0$ suy ra
        $\max y = \sqrt {\frac{{{p^p}{q^q}}}{{{{(p + q)}^{p + q}}}}} $
Đạt được khi:    ${\sin ^2}x = t = \frac{q}{{p + q}}$

Câu trắc nghiệm liên quan:

  1. Cho $f(x)=\sqrt{1+2 \cos x }+\sqrt{1+2 \sin x } . $  Tìm $max  f(x) , min  f(x). $
  2. Chứng minh rằng phương trình : $ (4x-3) \log_{2010}x + \frac{2x^2-3x+1}{x\ln 2010} = 0$ có nghiệm trên $\left ( \frac{1}{2} ;1 \right )$  
  3. $y =f(x) \frac{x^2 – 4x + 5}{x – 2}$$1$. Khảo sát sự biến thiên và vẽ đồ thị hàm số đã cho.$2$. Dựa vào đồ thị hàm số trên, biện luận theo $m$ số nghiệm của phương trình:                    ${x^2} – (4 + m)\left| x \right| + 5 + 2m = 0$
  4. Tìm giá trị lớn nhất và nhỏ nhất của hàm số $y=\frac{\ln^2 x}{x}$ trên đoạn $[1;e^3]$.
  5. Cho hàm số: $y = x + 1 + \frac{1}{x – 1}$1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số.2) Từ đồ thị trên, hãy suy ra số nghiệm $x \in \left( {0 ; \frac{\pi }{2}} \right)$ của phương trình $1+\sin x+\cos x+\frac{1}{2}(\tan x + \cot x +\frac{1}{\sin x}+\frac{1}{\cos x})=m$tùy theo giá trị của tham số $m$
  6. Tìm giá trị lớn nhất và nhỏ nhất của hàm số:$1/\,\,\,\,f(x) = \left| {{x^2} + 2x – 3} \right| + \frac{3}{2}\ln x$      trên đoạn $\left[ {\frac{1}{2},\,4} \right]$$2/\,\,\,\,\,f(x) = \left| {{x^2} + x – 2} \right| – \ln \frac{1}{x}$       trên đoạn $\left[ {\frac{1}{2},\,2} \right]$
  7. Cho $y=\sin ^3 x – \cos ^3x.$  Tìm $max  y , min  y.$
  8. Chứng minh rằng:$\frac{1}{1+(n+1)^{2}}
  9. Cho hàm số :  $y=1+\cos x + \frac{ 1}{ 2} \cos 2x + \frac{ 1}{ 3} \cos 3x.$ Tìm $max  y , min  y.$

Thuộc chủ đề:Hàm số Tag với:Ứng dụng hàm số vào giải toán

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính




Baitap.net (c) 2019 - Bài Tập Toán Lý Hóa Sinh Anh -Giới thiệu - Liên hệ - Bản quyền - Sitemap - Bảo mật
Học Toán - Học Trắc nghiệm - Ebook Toán - Học Giải - Mon Toán - Giai bai tap hay - Lop 12 - - HocZ Net -