Cho $y=\sqrt{acos^2x+bsin^2x+c}+\sqrt{asin^2x+bcos^2x+c} $Với $a > 0,b > 0,c > 0$. Tìm $\min y, \max y$
Bài giải chi tiết:
• Tính $\max y$
Theo bất đẳng thức Bunhiacopxki ta có:
$y \le \sqrt 2 \sqrt {a\cos {x^2} + b\sin {x^2} + c + a\sin {x^2} + b\cos {x^2} + c} = \sqrt 2 \sqrt {a + b + 2c} $
Dấu = xảy ra khi
$a\cos {x^2} + b\sin {x^2} + c = a\sin {x^2} + b\cos {x^2} + c$
Chẳng hạn như $\sin x = \cos x = \frac{{\sqrt 2 }}{2}$
Vậy $\max y = \sqrt 2 \sqrt {a + b + 2c} $
• Tính $\min y$
Do $y > 0$ nên ta xét:
$z = {y^2} = a + b + 2c + 2\sqrt {\left( {a\cos {x^2} + b\sin {x^2} + c} \right)\left( {a\sin {x^2} + b\cos {x^2} + c} \right)} $
$ = a + b + 2c + 2\sqrt {\left[ {a + c – \left( {a – b} \right)\sin {x^2}} \right].\left[ {b + c + \left( {a – b} \right)\sin {x^2}} \right]} $ $(1)$
Chỉ cần tìm $min$ của biểu thức trong căn, đặt ${\sin ^2}x = t \in \left[ {0;1} \right]$ ta được biểu thức đó là :
$u = \left[ {a + c – \left( {a – b} \right)t} \right].\left[ {b + c – \left( {a – b} \right)t} \right]$ với $t \in \left[ {0;1} \right]$
$u’ = … = – 2{\left( {a – b} \right)^2}t + {\left( {a – b} \right)^2}$ $(2)$
Trường hợp $a = b$ thì $u’ \equiv 0 \Rightarrow u = $ hằng $ \Rightarrow z = $ hằng.
$ \Rightarrow $ từ $(1)$ có $z = a + b + 2c + 2\sqrt {\left( {a + b} \right).\left( {b + c} \right)} = {\left( {\sqrt {a + b} + \sqrt {b + c} } \right)^2}$
$ \Rightarrow y = \sqrt {a + b} + \sqrt {b + c} $ nên $\min y = \sqrt {a + b} + \sqrt {b + c} = 2\sqrt {\left( {a + b} \right)} $
Trường hợp $a \ne b$: từ $(2)$ $u’$ có nghiệm là $t = \frac{1}{2}$ và đổi dấu qua $t = \frac{1}{2}$ từ + sang – nên:
$min u = min \left\{ {u\left( 0 \right);u\left( 1 \right)} \right\} = \min \left\{ {\left( {a + c} \right)\left( {b + c} \right);\left( {a + c} \right)\left( {b + c} \right)} \right\} = \left( {a + c} \right)\left( {b + c} \right)$
Suy ra
$\min z = a + b + 2c + 2\sqrt {\left( {a + c} \right)\left( {b + c} \right)} = {\left( {\sqrt {a + c} + \sqrt {b + c} } \right)^2}$
$ \Rightarrow min z = \sqrt {a + c} + \sqrt {b + c} $ vẫn như trường hợp $a = b$
Câu trắc nghiệm liên quan:
- Cho $f(x)=\sqrt{1+2 \cos x }+\sqrt{1+2 \sin x } . $ Tìm $max f(x) , min f(x). $
- Chứng minh rằng phương trình : $ (4x-3) \log_{2010}x + \frac{2x^2-3x+1}{x\ln 2010} = 0$ có nghiệm trên $\left ( \frac{1}{2} ;1 \right )$
- $y =f(x) \frac{x^2 – 4x + 5}{x – 2}$$1$. Khảo sát sự biến thiên và vẽ đồ thị hàm số đã cho.$2$. Dựa vào đồ thị hàm số trên, biện luận theo $m$ số nghiệm của phương trình: ${x^2} – (4 + m)\left| x \right| + 5 + 2m = 0$
- Tìm giá trị lớn nhất và nhỏ nhất của hàm số $y=\frac{\ln^2 x}{x}$ trên đoạn $[1;e^3]$.
- Cho hàm số: $y = x + 1 + \frac{1}{x – 1}$1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số.2) Từ đồ thị trên, hãy suy ra số nghiệm $x \in \left( {0 ; \frac{\pi }{2}} \right)$ của phương trình $1+\sin x+\cos x+\frac{1}{2}(\tan x + \cot x +\frac{1}{\sin x}+\frac{1}{\cos x})=m$tùy theo giá trị của tham số $m$
- Tìm giá trị lớn nhất và nhỏ nhất của hàm số:$1/\,\,\,\,f(x) = \left| {{x^2} + 2x – 3} \right| + \frac{3}{2}\ln x$ trên đoạn $\left[ {\frac{1}{2},\,4} \right]$$2/\,\,\,\,\,f(x) = \left| {{x^2} + x – 2} \right| – \ln \frac{1}{x}$ trên đoạn $\left[ {\frac{1}{2},\,2} \right]$
- Cho $y=\sin ^3 x – \cos ^3x.$ Tìm $max y , min y.$
- Chứng minh rằng:$\frac{1}{1+(n+1)^{2}}
- Cho hàm số : $y=1+\cos x + \frac{ 1}{ 2} \cos 2x + \frac{ 1}{ 3} \cos 3x.$ Tìm $max y , min y.$
Trả lời