Chứng minh rằng phương trình $4x^{4}+2x^{2}-x-3=0$ có ít nhất hai nghiệm phân biệt trên khoảng $(-1,1)$
Bài giải chi tiết:
Xét hàm số $f(x)=4x^{4}+2x^{2}-x-3$
Vì $f(x)$ là hàm đa thức nên liên tục trên các đoạn $[-1,0]$ và $[0,1]$
Ngoài ra $\begin{cases}f(-1)=4 \\ f(0)=-3 \end{cases}$
$\Rightarrow f(-1).f(0)=-12nên phương trình $f(x)=0$ có ít nhất một nghiệm $x_{1}\in (-1,0)$
và $\begin{cases}f(x)=-3 \\ f(1)=2 \end{cases}$
$\Rightarrow f(0).f(1)=-6nên phương trình $f(x)=0$ có ít nhất một nghiệm $x_{2}\in (0,1)$
Rõ ràng $x_{1}\neq x_{2}$
Tóm lại phương trình $f(x)=0$ có ít nhất hai nghiệm phân biệt trên khoảng $(-1,1)$
Câu trắc nghiệm liên quan:
- Chứng minh rằng phương trình: $2x+6\sqrt[3]{1-x}=3$ có ba nghiệm phân biệt thuộc $(-7,9)$
- Chứng minh rằng các phương trình sau đây:1) \(x^{5}-3x-1=0\) có ít nhất 1 nghiệm \(1
- Cho hàm số \(f(x)=\begin{cases}\frac{x^{3}-1}{x-1}, x\neq 1 \\ 3, x=1\end{cases}\). Chứng minh rằng \(f(x)\) liên tục tại \(x=1\).
- Chứng minh rằng phương trình: $ 5x^4+40x^3+105x^2+100x+24 = 0 $ có bốn nghiệm âm phân biệt.
- Chứng minh: $f(x)=a.\cos4x+b.\cos3x+c.\cos2x+d.\cos x=0$ luôn có nghiệm $ \in ( {0;\pi })$
- Xét dấu hàm số: $f(x) = 2 + \cos x – 2 \tan \frac{x}{2} $ trên $ (0,\pi )$
- Cho $f,g$ liên tục trên $[a,b]$ và $g(x_{0})\neq 0,x_{0}\in [a,b]$Chứng minh rằng:Nếu: $\begin{cases} 0
- Cho $ a_1, a_2, …, a_n$ là các hằng số thực. Chứng minh rằng phương trình $a_1.\cos x + a_2 \cos 2x+…+ a_n.\cos nx = 0$ luôn có nghiệm trên $[0;2\pi ].$
- Tìm các khoảng và nửa khoảng ở đó hàm sau đây liên tục:$y=f(x)=\begin{cases}x^{2}+x+1 nếu x
Trả lời