Dùng định nghĩa, tìm đạo hàm của hàm số tại điểm đã cho tương ứng:a) \(y=x^{2}-3x+2\) tại \(x_{0}=2\)b) \(y=x^{3}+2x+1\) tại \(x_{0}=1\).
Bài giải chi tiết:
a) Tìm số gia của hàm số tại \(x_{0}=2\).
\(\Delta y=f(2+\Delta x)-f(2)\)
\(=[(2+\Delta x)^{2}-3(2+\Delta x)+2]-[2^{2}-3.2+2]\)
\(=\Delta x+\Delta x^{2}\).
Lập tỉ số: \(\frac{\Delta y}{\Delta x}=\frac{\Delta x+\Delta x^{2}}{\Delta x}=1+\Delta x\).
Đạo hàm của hàm số tại \(x=2\), theo định nghĩa bằng
\(y'(2)=f'(2)=\mathop {\lim }\limits_{\Delta x \to 0}\frac{\Delta y}{\Delta x}=\mathop {\lim }\limits_{\Delta x \to 0}(1+\Delta x)=1\).
b) Làm tương tự câu a) ta được \(y'(1)=\mathop {\lim }\limits_{\Delta x \to 0}(5+3\Delta x+\Delta x^{2})=5\).
Câu trắc nghiệm liên quan:
- Cho $f(x)=x^{2}+3x+4$. Tính $f^{'}(2)$
- Tìm $a$ sao cho biểu thức: $ A = \cos 2x – a . \sin ^2 x+ 2 \cos ^2 x $ không phụ thuộc $x$.
- Tìm đạo hàm của hàm số: $y=f(x)=\begin{cases}1 với x=0 \\ \frac{1-\cos x}{x} với x \neq 0\end{cases}$
- Tính đạo hàm của các hàm số sau:a) $y = (3x – 2)\ln^2x$; b) $y = \sqrt{x^2 +1 }\ln x^2$ c) $y = x . \ln \frac{1}{1+x} $; d) $y = \frac{\ln (x^2 + 1)}{x} $
- Tính đạo hàm theo cấp đã cho của hàm số sau:$f(x)=\sin 3x$$f^{"}(-\frac{\pi}{2}),f^{"}(0),f^{"}(\frac{\pi}{18})?$
- Tính đạo hàm số cấp $n$ của hàm số:a) $y=\ln x$b) $y=\ln(x^2+x-2).$
- Cho $f(x)=x^3$ và $g(x)=4x^2+\cos\pi x$. Tính $\frac{f'(1)}{g'(1)}$
- Tìm đạo hàm của các hàm số:a) \(y=\cos^{3}(x^{2}+1)\)b) \(y=\cot (3x^{2}+\frac{x}{2})\).
- Chứng minh rằng :$ n C^0_n – (n-1)C^1_n +(n-2)C^2_n-(n-3)C^3_n+…+(-1)^{n-1}C^{n-1}_n = 0, \forall n \in N$
Trả lời