• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar

Bài Tập Toán Lý Hóa Sinh Tiếng Anh

Tập hợp bài tập môn Toán, Lý, Hóa, Sinh, Tiếng Anh, Sử, Địa, GDCD, Văn Phổ thông

  • Môn Toán
  • Môn Lý
  • Môn Hóa
  • Môn Sinh
  • Môn Anh
  • Môn Văn
  • Môn Sử
  • Môn Địa
  • Môn GDCD
  • Môn Công nghệ
  • Môn Tin học

Dùng định nghĩa, tìm đạo hàm của hàm số tại điểm đã cho tương ứng:a) \(y=x^{2}-3x+2\) tại \(x_{0}=2\)b) \(y=x^{3}+2x+1\) tại \(x_{0}=1\).

23/01/2020 by Baitap.net Để lại bình luận

Dùng định nghĩa, tìm đạo hàm của hàm số tại điểm đã cho tương ứng:a) \(y=x^{2}-3x+2\) tại \(x_{0}=2\)b) \(y=x^{3}+2x+1\) tại \(x_{0}=1\).

Bài giải chi tiết:

a) Tìm số gia của hàm số tại \(x_{0}=2\).
\(\Delta y=f(2+\Delta x)-f(2)\)
\(=[(2+\Delta x)^{2}-3(2+\Delta x)+2]-[2^{2}-3.2+2]\)
\(=\Delta x+\Delta x^{2}\).
Lập tỉ số: \(\frac{\Delta y}{\Delta x}=\frac{\Delta x+\Delta x^{2}}{\Delta x}=1+\Delta x\).
Đạo hàm của hàm số tại \(x=2\), theo định nghĩa bằng
\(y'(2)=f'(2)=\mathop {\lim }\limits_{\Delta x \to 0}\frac{\Delta y}{\Delta x}=\mathop {\lim }\limits_{\Delta x \to 0}(1+\Delta x)=1\).
b) Làm tương tự câu a) ta được \(y'(1)=\mathop {\lim }\limits_{\Delta x \to 0}(5+3\Delta x+\Delta x^{2})=5\).

Câu trắc nghiệm liên quan:

  1. Cho $f(x)=x^{2}+3x+4$. Tính $f^{'}(2)$
  2. Tìm $a$ sao cho biểu thức:  $ A = \cos 2x – a . \sin ^2 x+ 2 \cos ^2 x $  không phụ thuộc $x$.
  3. Tìm đạo hàm của hàm số: $y=f(x)=\begin{cases}1                                        với  x=0 \\ \frac{1-\cos x}{x}             với  x \neq  0\end{cases}$
  4. Tính đạo hàm của các hàm số sau:a) $y = (3x – 2)\ln^2x$;                                 b) $y = \sqrt{x^2 +1 }\ln x^2$ c) $y = x . \ln \frac{1}{1+x} $;                                         d) $y = \frac{\ln (x^2 + 1)}{x} $
  5. Tính đạo hàm theo cấp đã cho của hàm số sau:$f(x)=\sin 3x$$f^{"}(-\frac{\pi}{2}),f^{"}(0),f^{"}(\frac{\pi}{18})?$
  6. Tính đạo hàm số cấp $n$ của hàm số:a) $y=\ln x$b) $y=\ln(x^2+x-2).$
  7. Cho $f(x)=x^3$ và $g(x)=4x^2+\cos\pi x$.  Tính $\frac{f'(1)}{g'(1)}$
  8. Tìm đạo hàm của các hàm số:a) \(y=\cos^{3}(x^{2}+1)\)b) \(y=\cot (3x^{2}+\frac{x}{2})\).
  9. Chứng minh rằng :$ n C^0_n – (n-1)C^1_n +(n-2)C^2_n-(n-3)C^3_n+…+(-1)^{n-1}C^{n-1}_n = 0, \forall n \in  N$

Thuộc chủ đề:Hàm số Tag với:Đạo hàm

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính




Baitap.net (c) 2019 - Bài Tập Toán Lý Hóa Sinh Anh -Giới thiệu - Liên hệ - Bản quyền - Sitemap - Bảo mật
Học Toán - Học Trắc nghiệm - Ebook Toán - Học Giải - Mon Toán - Giai bai tap hay - Lop 12 - - HocZ Net -