Dùng định nghĩa tính đạo hàm của hàm số sau đây tại điểm \(x\).a) \(y=\frac{2x-1}{x+1}\)b) \(y=\sqrt{x+1}+x\)
Bài giải chi tiết:
a) \(y'(x)=\mathop {\lim }\limits_{\Delta x \to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}=
\mathop {\lim }\limits_{\Delta x \to 0} \frac{\frac{2(x+\Delta x)-1}{x+\Delta x +1}- \frac{2x-1}{x+1}}{\Delta x}=
\mathop {\lim }\limits_{\Delta x \to 0} \frac{-3(x+1)+3(x+\Delta x+1)}{\Delta x(x-1)(x+\Delta x -1)}\)
\(
=
\mathop {\lim }\limits_{\Delta x \to 0}\frac{3}{(x+1)(x+\Delta x+1)}
=\frac{3}{(x+1)^{2}}
\)
b) làm tương tự có: \(y'(x)=\frac{1+2\sqrt{x+1}}{2\sqrt{x+1}}\)
Câu trắc nghiệm liên quan:
- Cho $f(x)=x^{2}+3x+4$. Tính $f^{'}(2)$
- Tìm $a$ sao cho biểu thức: $ A = \cos 2x – a . \sin ^2 x+ 2 \cos ^2 x $ không phụ thuộc $x$.
- Tìm đạo hàm của hàm số: $y=f(x)=\begin{cases}1 với x=0 \\ \frac{1-\cos x}{x} với x \neq 0\end{cases}$
- Tính đạo hàm của các hàm số sau:a) $y = (3x – 2)\ln^2x$; b) $y = \sqrt{x^2 +1 }\ln x^2$ c) $y = x . \ln \frac{1}{1+x} $; d) $y = \frac{\ln (x^2 + 1)}{x} $
- Tính đạo hàm theo cấp đã cho của hàm số sau:$f(x)=\sin 3x$$f^{"}(-\frac{\pi}{2}),f^{"}(0),f^{"}(\frac{\pi}{18})?$
- Tính đạo hàm số cấp $n$ của hàm số:a) $y=\ln x$b) $y=\ln(x^2+x-2).$
- Cho $f(x)=x^3$ và $g(x)=4x^2+\cos\pi x$. Tính $\frac{f'(1)}{g'(1)}$
- Tìm đạo hàm của các hàm số:a) \(y=\cos^{3}(x^{2}+1)\)b) \(y=\cot (3x^{2}+\frac{x}{2})\).
- Chứng minh rằng :$ n C^0_n – (n-1)C^1_n +(n-2)C^2_n-(n-3)C^3_n+…+(-1)^{n-1}C^{n-1}_n = 0, \forall n \in N$
Trả lời