$f(x) = \cos x + \sqrt{2-\cos ^2 x .} $ Tìm $Max f(x) , Min f(x).$
Bài giải chi tiết:
Tập xác định là $R$
Đặt $\cos x =t.$ Điều kiện của $t: t \in [-1;1] (A)$
Hàm số $f(x)$ có dạng : $F=t+\sqrt{2-t^2} $ với $t \in (A)$
$F’ (t) = 1 – \frac{ 1}{ \sqrt{2}-t^2 }, F'(t) =0 \Leftrightarrow t =1$
$\mathop {M{\rm{ax}}}\limits_A F = max {F(-1) ; F(1)} =2$ khi $t=1$
$\mathop {Min}\limits_A F=min {F(-1) ; F(1)} =0$ khi $t=-1$
Cách $2:$
Áp dụng BĐT Bunhiacopski ta có: $f(x)\le\sqrt{(1^2+1^2)(\cos^2 x+2-\cos^2 x)}=2$
Dấu đẳng thức xảy ra khi và chỉ khi: $\cos x=\sqrt{2-\cos^2 x}\Leftrightarrow \cos x=1\Leftrightarrow x=2k\pi$
Có: $\sqrt{2-\cos^2x}\ge1; \cos x\ge -1\Rightarrow f(x)\ge 0$
Dấu đẳng thức xảy ra khi và chỉ khi: $\cos x=-1\Leftrightarrow x=\pi+2k\pi$
Vậy $ Max f(x) = 2$ khi $x=2k\pi$
$Min f(x)=0$ khi $x=\pi+2k\pi$
Câu trắc nghiệm liên quan:
- Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm sốa) $f(x)=x^2 \ln x$ trên đoạn $[1;e].$b) $f(x)=x e^{-x}$ trên nửa khoảng $[0;\infty ).$
- Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số: $f(x)=-x^2+2x+4$ trên đoạn $[2;4]$.
- Trong các nghiệm $(x,y)$ của bất phương trình : $\log _{x^2+y^2}(x+y)\geq 1$. Hãy tìm nghiệm có tổng $x+2y$ lớn nhất.
- Cho hàm số $y=\frac{x^{2}+2x+3}{x^{2}+2}$. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số.
- Cho $n$ số ${a_1},{a_2},…,{a_n}$với ${a_1} < {a_2} < ... < {a_n}$. Tìm giá trị nhỏ nhất của hàm số $f(x) = \sum\limits_{i = 1}^n {|{x - {a_i}}| } $
- Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm sốa) $y=\frac{\ln^2 x}{x} $ trên đoạn $[1;e^3].$b) $y=x^2e^{-x}$ trên đoạn $[0; \ln 8].$
- Cho $a,b,c,d$ là bốn số thực thỏa mãn các điều kiện: $\begin{cases}a^2+b^2+6=4(a+b) \\ c^2+d^2+64=12(c+d) \end{cases}$ Tìm GTLN, GTNN của biểu thức: $S=(a-c)^2+(b-d)^2$
- Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số : $y=\frac{3\sin x}{2+\cos x}$.
- Cho \(x^{2}+y^{2}=2\) (\(x,y>0\)). Tìm giá trị lớn nhất của \((x+y)xy\).
Trả lời