• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar

Bài Tập Toán Lý Hóa Sinh Tiếng Anh

Tập hợp bài tập môn Toán, Lý, Hóa, Sinh, Tiếng Anh, Sử, Địa, GDCD, Văn Phổ thông

  • Môn Toán
  • Môn Lý
  • Môn Hóa
  • Môn Sinh
  • Môn Anh
  • Môn Văn
  • Môn Sử
  • Môn Địa
  • Môn GDCD
  • Môn Công nghệ
  • Môn Tin học

Gọi $(C)$ là đồ thị hàm số $y = \frac{1}{x}$, và $(D)$ là đường thẳng có phương trình $y = ax + b$.1) $a, b$ phải thỏa mãn điều kiện gì để đường thẳng $(D)$ tiếp xúc với $(C)$?2) Giả sử điều kiện trên được nghiệm đúng. Khi đó $(D)$ cắt $Ox$ và $Oy$ tại $M$ và $N$.a) Chứng tỏ rằng tam giác $OMN$ có diện tích không đổi.b) Chứng tỏ rằng điểm giữa của đoạn $MN$ là tiếp điểm của $(D)$ với $(C)$.c) Khi nào thì khoảng cách từ gốc tọa độ $O$ đến $(D)$ là lớn nhất

17/01/2020 by Baitap.net Để lại bình luận

Gọi $(C)$ là đồ thị hàm số $y = \frac{1}{x}$, và $(D)$ là đường thẳng có phương trình $y = ax + b$.1) $a, b$ phải thỏa mãn điều kiện gì để đường thẳng $(D)$ tiếp xúc với $(C)$?2) Giả sử điều kiện trên được nghiệm đúng. Khi đó $(D)$ cắt $Ox$ và $Oy$ tại $M$ và $N$.a) Chứng tỏ rằng tam giác $OMN$ có diện tích không đổi.b) Chứng tỏ rằng điểm giữa của đoạn $MN$ là tiếp điểm của $(D)$ với $(C)$.c) Khi nào thì khoảng cách từ gốc tọa độ $O$ đến $(D)$ là lớn nhất

Bài giải chi tiết:

$1)$ Hoành độ tiếp điểm của $(D)$ với $(C)$ là nghiệm của hệ
        $\left\{ \begin{array}{l}
\frac{1}{x} = {{ax}} + b{{                                  (1)}}\\
y’ = – \frac{1}{{{x^2}}} = a{{                               }}(2)
\end{array} \right.$
Thế $(2)$ vào $(1)$ ta được: $b – 2/x = 0 \Rightarrow bx – 2 = 0$.
Để hệ $(1), (2)$ có nghiệm, cần có $b \ne 0 \Rightarrow x = 2/b$.
Thế vào $(2)$ ta có $a = – {b^2}/4$
                    Đáp số: $b \ne 0,{{ a}} = – {b^2}/4$

$2)$
a) $(D)$ cắt $Ox$ và $Oy$ tại $M$  và $N$, ta có ${y_M} = 0;{{ }}{{{x}}_M} = – b/a,{{ }}{{{x}}_N} = 0;{{ }}{{{y}}_N} = b$, do đó
    $dt(OMN) = (1/2)OM.ON = (1/2).\left| {{x_M}.{y_N}} \right| = (1/2)\left| {(4/b).b} \right| = 2$

b) Gọi $I$ là trung điểm đoạn thẳng $MN$, hoành độ ${x_1}$ của $I$ bằng
    ${x_1} = (1/2)({x_M} + {x_N}) = (1/2)(4/b + 0) = 2/b$.
Áp dụng kết quả phần $1)$ ta có ${x_1} = 2/b$ là hoành độ tiếp điểm.

c) Đường thẳng $(D’)$ qua $O$ và vuông góc với $(D)$ có phương trình $y = – {{ax}}$.
Gọi $({x_1},{y_1})$ là tọa độ giao điểm của $(D’)$ và $(D)$ ta có
    $ – {{a}}{{{x}}_1} = {{a}}{{{x}}_1} + b$
$ \Rightarrow {x_1} = \frac{{ – b}}{{2a}} = \frac{{ – b}}{{2.( – {b^2}/4)}} = \frac{2}{b}$
$ \Rightarrow {y_1} = – {{a}}{{{x}}_1} = – a.\frac{2}{b} = \frac{{{b^2}}}{4}.\frac{2}{b} = \frac{b}{2}$.
Vậy khoảng cách $d$ từ $O$ đến $(D)$ bằng
    $d = \sqrt {{{(2/b)}^2} + {{(b/2)}^2}}  \ge \sqrt 2 $
$ \Rightarrow \max d = \sqrt 2 $ đạt được khi $2/b = b/2 \Leftrightarrow b = \pm 2 \Rightarrow a = – 1$

Câu trắc nghiệm liên quan:

  1. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm sốa) $f(x)=x^2 \ln x$ trên đoạn $[1;e].$b) $f(x)=x e^{-x}$ trên nửa khoảng $[0;\infty ).$
  2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số:   $f(x)=-x^2+2x+4$ trên đoạn $[2;4]$.
  3. Trong các nghiệm $(x,y)$ của bất phương trình : $\log _{x^2+y^2}(x+y)\geq 1$.  Hãy tìm nghiệm có tổng $x+2y$ lớn nhất.
  4. Cho hàm số $y=\frac{x^{2}+2x+3}{x^{2}+2}$. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số.
  5. Cho $n$ số ${a_1},{a_2},…,{a_n}$với ${a_1} < {a_2} < ... < {a_n}$. Tìm giá trị nhỏ nhất của hàm số $f(x) = \sum\limits_{i = 1}^n {|{x - {a_i}}| } $
  6. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm sốa) $y=\frac{\ln^2 x}{x} $ trên đoạn $[1;e^3].$b) $y=x^2e^{-x}$ trên đoạn $[0; \ln 8].$
  7.   Cho $a,b,c,d$ là bốn số thực thỏa mãn các điều kiện:          $\begin{cases}a^2+b^2+6=4(a+b) \\ c^2+d^2+64=12(c+d) \end{cases}$ Tìm GTLN, GTNN của biểu thức: $S=(a-c)^2+(b-d)^2$
  8. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số :         $y=\frac{3\sin x}{2+\cos x}$.
  9. Cho \(x^{2}+y^{2}=2\) (\(x,y>0\)). Tìm giá trị lớn nhất của \((x+y)xy\).

Thuộc chủ đề:Hàm số Tag với:Giá trị lớn nhất - nhỏ nhất

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính




Bài viết mới

  • Với những giá trị nào của $y$ thì bất đẳng thức sau thỏa mãn $\forall x \in \,R\,$ :    ${x^2}\left( {2 – {{\log }_2}\frac{y}{{y + 1}}} \right) + 2x\left( {1 + {{\log }_2}\frac{y}{{y + 1}}} \right) – 2\left( {1 + {{\log }_2}\frac{y}{{y + 1}}} \right) > 0\,\,\,\,\,\,\,\,(1)$ 29/03/2020
  •     Tìm $m$ để bất phương trình sau có nghiệm:               $x^2-2mx+2|x-m|+4 29/03/2020
  • Tìm $m$ để hệ: a)$\begin{cases}\frac{7}{6}x-\frac{1}{2}>\frac{3x}{2}-\frac{13}{3}  \\ m^{2}x+1 \geq  m^{4}-x   \end{cases} $ có nghiệm                 b)$\begin{cases}x-2 \geq   0 \\ mx-4 \leq  0 \end{cases} $ có nghiệm là một đoạn có độ dài bằng $5$ 29/03/2020
  • Cho bất phương trình $\sqrt{-x^2+6x-5} \geq m-2x                 (1)$ a) Giải phương  trình khi $m=8$b) Tìm $m$ để bất phương trình $(1)$ nghiệm đúng với $\forall x \in [1;5]$ 29/03/2020
  • Tìm $m$ để hệ sau có nghiệm duy nhất: $\left\{ \begin{array}{l} x^2+(y+1)^2\leq  m   (1)\\ (x+1)^2+y^2\leq  m   (2) \end{array} \right. $ 28/03/2020

Baitap.net (c) 2021 - Bài Tập Toán Lý Hóa Sinh Anh -Giới thiệu - Liên hệ - Bản quyền - Sitemap - Bảo mật
Học Toán - Học Trắc nghiệm - Ebook Toán - Học Giải - Trắc nghiệm Toán - Giai bai tap hay - Lop 12