Hãy xác định $m$ sao cho tổng bình phương các nghiệm của phương trình sau đạt giá trị nhỏ nhất: $x^2 – (3m + 2)x – 3 – 2m = 0$
Bài giải chi tiết:
Ta có: $\Delta =(3m+2)^2+4(3+2m)= 9{m^2} + 20m + 16 > 0\forall m$
Vậy pt luôn có $2$ nghiệm phân biệt $x_1; x_2$. Mặt khác ta có:
$\begin{array}{l}
T = x_1^2 + x_2^2 = {S^2} – 2P = 9{m^2} + 16m + 10\\
\Rightarrow T = {\left( {3m + \frac{8}{3}} \right)^2} + \frac{{26}}{9} \ge \frac{{26}}{9}\end{array}$
$T_{min} =\frac{{26}}{9}\Leftrightarrow m = -\frac{8}{9} $
Câu trắc nghiệm liên quan:
- Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm sốa) $f(x)=x^2 \ln x$ trên đoạn $[1;e].$b) $f(x)=x e^{-x}$ trên nửa khoảng $[0;\infty ).$
- Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số: $f(x)=-x^2+2x+4$ trên đoạn $[2;4]$.
- Trong các nghiệm $(x,y)$ của bất phương trình : $\log _{x^2+y^2}(x+y)\geq 1$. Hãy tìm nghiệm có tổng $x+2y$ lớn nhất.
- Cho hàm số $y=\frac{x^{2}+2x+3}{x^{2}+2}$. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số.
- Cho $n$ số ${a_1},{a_2},…,{a_n}$với ${a_1} < {a_2} < ... < {a_n}$. Tìm giá trị nhỏ nhất của hàm số $f(x) = \sum\limits_{i = 1}^n {|{x - {a_i}}| } $
- Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm sốa) $y=\frac{\ln^2 x}{x} $ trên đoạn $[1;e^3].$b) $y=x^2e^{-x}$ trên đoạn $[0; \ln 8].$
- Cho $a,b,c,d$ là bốn số thực thỏa mãn các điều kiện: $\begin{cases}a^2+b^2+6=4(a+b) \\ c^2+d^2+64=12(c+d) \end{cases}$ Tìm GTLN, GTNN của biểu thức: $S=(a-c)^2+(b-d)^2$
- Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số : $y=\frac{3\sin x}{2+\cos x}$.
- Cho \(x^{2}+y^{2}=2\) (\(x,y>0\)). Tìm giá trị lớn nhất của \((x+y)xy\).
Trả lời