Tìm đạo hàm của hàm số: $y=f(x)=\begin{cases}1 với x=0 \\ \frac{1-\cos x}{x} với x \neq 0\end{cases}$
Bài giải chi tiết:
Ta có $f(0)=1$
Ta lại có: $\mathop {\lim }\limits_{x \to 0}f(x) = \mathop {\lim }\limits_{x \to 0}\frac {1-\cos x}{x}=\mathop {\lim }\limits_{x \to 0}\frac {2\sin^2\frac{x}{2}}{2.\frac{x}{2}}=\mathop {\lim }\limits_{x \to 0}\sin \frac{x}{2}.\mathop {\lim }\limits_{x \to 0}\frac{\sin \frac{x}{2}}{\frac{x}{2}}=0\neq f(0) $
$\Rightarrow $ hàm số $y=f(x) $ không liên tục tại $x=0$
$\Rightarrow y=f(x)$ không có đạo hàm tại $x=0$.
Với $x \neq 0 \Rightarrow f'(x)= \frac {x\sin x-1+\cos x}{x^2}$ .
Vậy: + $x=0$, hàm số không có đạo hàm.
+ $x\neq0\Rightarrow f'(x)= \frac {x\sin x-1+\cos x}{x^2}$
Câu trắc nghiệm liên quan:
- Cho $f(x)=x^{2}+3x+4$. Tính $f^{'}(2)$
- Tìm $a$ sao cho biểu thức: $ A = \cos 2x – a . \sin ^2 x+ 2 \cos ^2 x $ không phụ thuộc $x$.
- Tính đạo hàm của các hàm số sau:a) $y = (3x – 2)\ln^2x$; b) $y = \sqrt{x^2 +1 }\ln x^2$ c) $y = x . \ln \frac{1}{1+x} $; d) $y = \frac{\ln (x^2 + 1)}{x} $
- Tính đạo hàm theo cấp đã cho của hàm số sau:$f(x)=\sin 3x$$f^{"}(-\frac{\pi}{2}),f^{"}(0),f^{"}(\frac{\pi}{18})?$
- Tính đạo hàm số cấp $n$ của hàm số:a) $y=\ln x$b) $y=\ln(x^2+x-2).$
- Cho $f(x)=x^3$ và $g(x)=4x^2+\cos\pi x$. Tính $\frac{f'(1)}{g'(1)}$
- Tìm đạo hàm của các hàm số:a) \(y=\cos^{3}(x^{2}+1)\)b) \(y=\cot (3x^{2}+\frac{x}{2})\).
- Chứng minh rằng :$ n C^0_n – (n-1)C^1_n +(n-2)C^2_n-(n-3)C^3_n+…+(-1)^{n-1}C^{n-1}_n = 0, \forall n \in N$
- Chứng minh rằng hàm số sau đây thỏa mãn hệ thức tương ứng đã cho:$y=A\sin (\omega t+\varphi)+B\cos (\omega t+\varphi) $ thỏa mãn $y^{"}+\omega^{2} y=0$Trong đó $A,B,\omega ,\varphi$ là những hằng số
Trả lời