• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar

Bài Tập Toán Lý Hóa Sinh Tiếng Anh

Tập hợp bài tập môn Toán, Lý, Hóa, Sinh, Tiếng Anh, Sử, Địa, GDCD, Văn Phổ thông

  • Môn Toán
  • Môn Lý
  • Môn Hóa
  • Môn Sinh
  • Môn Anh
  • Môn Văn
  • Môn Sử
  • Môn Địa
  • Môn GDCD
  • Môn Công nghệ
  • Môn Tin học

Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm sốa) $y=\frac{\ln^2 x}{x} $ trên đoạn $[1;e^3].$b) $y=x^2e^{-x}$ trên đoạn $[0; \ln 8].$

30/01/2020 by Baitap.net Để lại bình luận

Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm sốa) $y=\frac{\ln^2 x}{x} $ trên đoạn $[1;e^3].$b) $y=x^2e^{-x}$ trên đoạn $[0; \ln 8].$

Bài giải chi tiết:

a) Hàm số $y=f(x)=\frac{\ln^2 x}{x}$ liên tục trên đoạn $[1;e^3]$ và có đạo hàm
Ta có: $y’=\frac{x.2\ln x.\frac{1}{x}-\ln^2x }{x^2}=\frac{2\ln x-\ln^2x}{x^2}=\frac{\ln x(2-\ln x)}{x^2}.$
Lập bảng biến thiên ta có:
$\mathop {\max }\limits_{1\leq x\leq e^3  } y =y(e^2)=\frac{4}{e^2}; \mathop {\min }\limits_{1\leq x\leq e^3  }y=\min\left\{y(1);y(e^3) {} \right\}=\min\left\{0; \frac{9}{e^3} {} \right\} =0.$

b) Hàm số $y=g(x)=x^2e^{-x}$ liên tục trên đoạn $[0;\ln 8]$ và có đạo hàm $g'(x)=2xe^{-x}+x^2(-e^{-x})=(2x-x^2)e^{-x}, x\in [0;\ln 8].$
$g'(x)=0\Leftrightarrow x=0$ hoặc $x=2$ (hai nghiệm này đều thuộc đoạn $[0;\ln 8]$)
Ta có $g(0)=0; g(2)=4e^{-2}=\frac{4}{e^2}; g(\ln 8)=\frac{(\ln 8)^2}{8}=\frac{9(\ln 2)^2}{8}$
Vậy $\mathop {\max }\limits_{x\in [0; \ln 8] }g(x)=\frac{4}{e^2} $ và $\mathop {\min }\limits_{x\in [0; \ln 8] }g(x)=0$

Câu trắc nghiệm liên quan:

  1. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm sốa) $f(x)=x^2 \ln x$ trên đoạn $[1;e].$b) $f(x)=x e^{-x}$ trên nửa khoảng $[0;\infty ).$
  2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số:   $f(x)=-x^2+2x+4$ trên đoạn $[2;4]$.
  3. Trong các nghiệm $(x,y)$ của bất phương trình : $\log _{x^2+y^2}(x+y)\geq 1$.  Hãy tìm nghiệm có tổng $x+2y$ lớn nhất.
  4. Cho hàm số $y=\frac{x^{2}+2x+3}{x^{2}+2}$. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số.
  5. Cho $n$ số ${a_1},{a_2},…,{a_n}$với ${a_1} < {a_2} < ... < {a_n}$. Tìm giá trị nhỏ nhất của hàm số $f(x) = \sum\limits_{i = 1}^n {|{x - {a_i}}| } $
  6.   Cho $a,b,c,d$ là bốn số thực thỏa mãn các điều kiện:          $\begin{cases}a^2+b^2+6=4(a+b) \\ c^2+d^2+64=12(c+d) \end{cases}$ Tìm GTLN, GTNN của biểu thức: $S=(a-c)^2+(b-d)^2$
  7. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số :         $y=\frac{3\sin x}{2+\cos x}$.
  8. Cho \(x^{2}+y^{2}=2\) (\(x,y>0\)). Tìm giá trị lớn nhất của \((x+y)xy\).
  9. $1.$ Giải phương trình: $\sqrt{3}\sin x+\cos x=\frac{1}{\cos x}  $$2.$ Tìm giá trị lớn nhất của hàm số:   $y=\sin x\sqrt{\cos x}+\cos x\sqrt{\sin x}  $

Thuộc chủ đề:Hàm số Tag với:Giá trị lớn nhất - nhỏ nhất

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính




Baitap.net (c) 2019 - Bài Tập Toán Lý Hóa Sinh Anh -Giới thiệu - Liên hệ - Bản quyền - Sitemap - Bảo mật
Học Toán - Học Trắc nghiệm - Ebook Toán - Học Giải - Trắc nghiệm Toán - Giai bai tap hay