• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar

Bài Tập Toán Lý Hóa Sinh Tiếng Anh

Tập hợp bài tập môn Toán, Lý, Hóa, Sinh, Tiếng Anh, Sử, Địa, GDCD, Văn Phổ thông

  • Môn Toán
  • Môn Lý
  • Môn Hóa
  • Môn Sinh
  • Môn Anh
  • Môn Văn
  • Môn Sử
  • Môn Địa
  • Môn GDCD
  • Môn Công nghệ
  • Môn Tin học

Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức: $A = \frac{{{x^2} + {y^2}}}{{{x^2} + xy + 4{y^2}}}$Trong đó $x, y$ là các số thực tùy ý không đồng thời bằng không.

27/01/2020 by Baitap.net Để lại bình luận

Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức: $A = \frac{{{x^2} + {y^2}}}{{{x^2} + xy + 4{y^2}}}$Trong đó $x, y$ là các số thực tùy ý không đồng thời bằng không.

Bài giải chi tiết:

Dễ nhận thấy rằng $A$ luôn xác định với $\forall x,y \in R$ không đồng thời bằng $0$.
a) Xét $x = 0$, khi đó $A = \frac{{{y^2}}}{{4{y^2}}} = \frac{1}{4}         \left( {\forall y \in R,{\rm{ y}} \ne {\rm{0}}} \right)$
b) Xét $x \ne 0$, chia cả tử và mẫu của $A$ cho ${x^2}$ ta được:  $A = \frac{{1 + {{\left( {\frac{y}{x}} \right)}^2}}}{{1 + \frac{y}{x} + 4{{\left( {\frac{y}{x}} \right)}^2}}}$           $ (1)$
Đặt $t = \frac{y}{x}$, khi đó $(1)$ trở thành  $A = \frac{{1 + {t^2}}}{{1 + t + 4{t^2}}}$    (xác định với $\forall t \in R$)
$ \Leftrightarrow A(1 + t + 4{t^2}) = 1 + {t^2}            {\rm{ (}}\forall {\rm{t}} \in R)$
$ \Leftrightarrow (4A – 1){t^2} + At + A – 1 = 0         {\rm{ (}}\forall t \in R)$           $ (2)$
•    $4A – 1 = 0 \Leftrightarrow A = \frac{1}{4}$:  $(2)$ trở thành $\frac{t}{4} + \frac{1}{4} – 1 = 0 \Leftrightarrow t = 3$
•    $4A – 1 \ne 0$: Để $(2)$ có nghiệm ta cần có
$\Delta  = {A^2} – 4(4A – 1)(A – 1) = – 15{A^2} + 2A – 4 \ge 0$
$ \Leftrightarrow \frac{{10 – 2\sqrt {10} }}{{15}} \le A \le \frac{{10 + 2\sqrt {10} }}{{15}}$
Dễ nhận thấy rằng $\frac{{10 – 2\sqrt {10} }}{{15}} Nên     $\min A = \frac{{10 – 2\sqrt {10} }}{{15}},{\rm{ }}\max A = \frac{{10 + 2\sqrt {10} }}{{15}}$

Câu trắc nghiệm liên quan:

  1. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm sốa) $f(x)=x^2 \ln x$ trên đoạn $[1;e].$b) $f(x)=x e^{-x}$ trên nửa khoảng $[0;\infty ).$
  2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số:   $f(x)=-x^2+2x+4$ trên đoạn $[2;4]$.
  3. Trong các nghiệm $(x,y)$ của bất phương trình : $\log _{x^2+y^2}(x+y)\geq 1$.  Hãy tìm nghiệm có tổng $x+2y$ lớn nhất.
  4. Cho hàm số $y=\frac{x^{2}+2x+3}{x^{2}+2}$. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số.
  5. Cho $n$ số ${a_1},{a_2},…,{a_n}$với ${a_1} < {a_2} < ... < {a_n}$. Tìm giá trị nhỏ nhất của hàm số $f(x) = \sum\limits_{i = 1}^n {|{x - {a_i}}| } $
  6. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm sốa) $y=\frac{\ln^2 x}{x} $ trên đoạn $[1;e^3].$b) $y=x^2e^{-x}$ trên đoạn $[0; \ln 8].$
  7.   Cho $a,b,c,d$ là bốn số thực thỏa mãn các điều kiện:          $\begin{cases}a^2+b^2+6=4(a+b) \\ c^2+d^2+64=12(c+d) \end{cases}$ Tìm GTLN, GTNN của biểu thức: $S=(a-c)^2+(b-d)^2$
  8. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số :         $y=\frac{3\sin x}{2+\cos x}$.
  9. Cho \(x^{2}+y^{2}=2\) (\(x,y>0\)). Tìm giá trị lớn nhất của \((x+y)xy\).

Thuộc chủ đề:Hàm số Tag với:Giá trị lớn nhất - nhỏ nhất

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

Bài viết mới

  • Cho hình hộp chữ nhật đáy là hình vuông cạnh đáy bằng $2r$, chiều cao là $3,5r$. Hỏi có thể xếp vào đó 13 quả cầu bán kính $r$ hay không? 15/02/2021
  • Tìm tất cả số phức $z$, biết rằng $z^2=|z|^2+\overline{z}$. 15/02/2021
  • 1, Cho số phức $\alpha$. Chứng minh rằng với mọi số phức z, ta có:                 $z\overline{z} +\overline{\alpha}z+\alpha \overline{z} =|z+\alpha|^2-\alpha \overline{\alpha}  $ 2, Từ câu 1. hãy xác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số z thỏa mãn $z\overline{z} +\overline{\alpha}z+\alpha \overline{z} +k=0$, trong đó $\alpha$ là số phức cho trước, k là số thực cho  trước 15/02/2021
  • Tìm căn bậc hai của số phức $-8+6i$ 13/02/2021
  • Chứng minh rằng nếu z là một căn bậc hai của số phức w thì $|z|=\sqrt{|w|} $ 13/02/2021




Baitap.net (c) 2019 - Bài Tập Toán Lý Hóa Sinh Anh -Giới thiệu - Liên hệ - Bản quyền - Sitemap - Bảo mật
Học Toán - Học Trắc nghiệm - Ebook Toán - Học Giải - Mon Toán - Giai bai tap hay - Lop 12 - - HocZ Net -