• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar

Bài Tập Toán Lý Hóa Sinh Tiếng Anh

Tập hợp bài tập môn Toán, Lý, Hóa, Sinh, Tiếng Anh, Sử, Địa, GDCD, Văn Phổ thông

  • Môn Toán
  • Môn Lý
  • Môn Hóa
  • Môn Sinh
  • Môn Anh
  • Môn Văn
  • Môn Sử
  • Môn Địa
  • Môn GDCD
  • Môn Công nghệ
  • Môn Tin học

Tìm giá trị nhỏ nhất của hàm số :$\begin{array}{l}1/\,\,\,\,\,y = x\ln x – x\ln 5,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x \in \left[ {1,5} \right]\\2/\,\,\,\,y = \frac{1}{2}x\ln x – x\ln 2,\,\,\,\,\,\,\,\,\,\,\,\,\,x \in \left[ {1,2} \right]\end{array}$

17/11/2019 by Baitap.net

$1/$   Hàm số  $y = x\ln x – x\ln 5$ xác định trên $\left[ {1,5} \right]$
                       $\begin{array}{l}
{y’ } = \ln x + 1 – \ln 5 = \ln \frac{{ex}}{5}\\
{y’ } = 0\,\,\,\,\,\, \Leftrightarrow \,\,\,\,\frac{{ex}}{5} = 1\,\,\,\,\,\,\,\, \Leftrightarrow x = \frac{5}{e}\\
f\left( {\frac{5}{e}} \right) = \frac{5}{e}\left( {\ln \frac{5}{e} – \ln 5} \right) =  – \frac{5}{e}
\end{array}$
Hàm số $y = x\ln x – x\ln 5$ đạt $1$ giá trị cực tiểu trên đoạn $\left[ {1,5} \right]$, đó là giá trị bằng $ – \frac{5}{e}$tại điểm $x = \frac{5}{e}$
        Vậy $\mathop {\min y}\limits_{1 \le x \le 5}  =  – \frac{5}{e}$
 $2/$  Hàm số  $y = \frac{1}{2}x\ln x – x\ln 2$ xác định trên $\left[ {1,2} \right]$
$\begin{array}{l}
{y’ } =\frac{1}{2}( \ln x + 1) – \ln 2 = \ln \frac{\sqrt {ex}}{2}\\
{y’ } = 0\,\,\,\,\,\, \Leftrightarrow \,\,\,\,\frac{\sqrt{ex}}{2} = 1\,\,\,\,\,\,\,\, \Leftrightarrow x = \frac{4}{e}\\
f\left( {\frac{4}{e}} \right) = \frac{2}{e}\ln \frac{4}{e}-\frac{4}{e}.\ln 2=  – \frac{2}{e}
\end{array}$
Hàm
số $y = \frac{1}{2}x\ln x – x\ln 2$ đạt $1$ giá trị cực tiểu trên đoạn $\left[
{1,2} \right]$, đó là giá trị bằng $ – \frac{2}{e}$tại điểm $x =
\frac{4}{e}$
        Vậy $\mathop {\min y}\limits_{1 \le x \le 2}  =  – \frac{2}{e}$

Câu trắc nghiệm liên quan:

  1. Cho hàm số $y=\frac{x^{2}+2x+3}{x^{2}+2}$. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số.
  2. Tìm giá trị lớn nhất và nhỏ nhất của hàm số $y=\sqrt{1+\sin x}-3$
  3. Cho biểu thức $P$ = \(\cos A + \cos B + \cos C\). Trong đó $A, B, C$ là các góc của tam giác $ABC$ bất kì. Chứng minh rằng $P$ đạt giá trị lớn nhất nhưng không đạt giá trị nhỏ nhất.
  4. Trong các số thực $x, y, z$ thỏa mãn hệ thức \({\left( {x – 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 1} \right)^2} = 1\). Hãy tìm x, y, z để biểu thức \(|x + 2y + 3z – 8|\) đạt giá trị lớn nhất. Xác định giá trị đó.
  5. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y=\frac{4x+3}{x^{2}+1}$.
  6. Tìm giá trị lớn nhất và nhỏ nhất của hàm số: $y=sin^{6}x+cos^{6}x+asinxcosx$
  7.  Tìm giá trị lớn nhất và nhỏ nhất của hàm số \(y = \frac{{3{x^2} + 10x + 20}}{{{x^2} + 2x + 3}}\)
  8.   Tìm giá trị lớn nhất của hàm số: $y=[\frac{12x(x-a)}{x^2+36}]^\frac{3}{4}$
  9.   Xác định tham số $a,b$ sao cho hàm số $y=\frac{ax+b}{x^2+1}$ đạt giá trị lớn nhất bằng $4$, giá trị nhỏ nhất bằng $-1$

Filed Under: Hàm số Tagged With: Giá trị lớn nhất - nhỏ nhất

Reader Interactions

Primary Sidebar




Bài viết mới

  • Cho $a,b,c \geq 1.$Hãy chứng minh:$1/\frac{1}{1+a^{2}}+\frac{1}{1+b^{2}}\geq \frac{2}{1+ab}$$2/\frac{1}{1+a^{3}}+\frac{1}{1+b^{3}}+\frac{1}{1+c^{3}}\geq \frac{3}{1+abc} $(Đây là dạng bất đẳng thức JenSen) 19/11/2019
  • Cho $ a,b,c>0$. Chứng minh a) Nếu $a>b$ thì $\frac{a}{b}>\frac{a+c}{b+c} $                          b) Nếu $ a 19/11/2019
  • Cho ba số dương $a,b,c$. Chứng minh rằng:   $\frac{a+b}{c}+\frac{b+c}{a}+\frac{a+c}{b}\geq 6$ 19/11/2019
  • Chứng minh rằng:   $\sin \frac{5\pi}{12}+\sin \frac{\pi}{12}>1$ 19/11/2019
  • Cho $a, b>0$. Chứng minh:a) $\frac{a}{b}+\frac{b}{a}\geq 2           (1)$ Dấu = chỉ xảy ra khi $a=b$.b) $\frac{1}{a}+\frac{1}{b}\geq \frac{4}{a+b}      (2)$ Dấu = chỉ xảy ra khi $a=b$. 19/11/2019

Baitap.net (c) 2019 - Giải Bài Tập Toán Lý Hóa Sinh Tiếng Anh và các môn khác
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Bảo mật - Học Toán - Học Trắc nghiệm - Ebook Toán - Học Giải - Trắc nghiệm Toán