$f(x)=2(\frac{1-cos2x}{2} )+2sin2x+\sqrt{5} $
$=1+\sqrt{5}+\sqrt{5} (\frac{2}{\sqrt{5} }sin2x-\frac{1}{\sqrt{5} }cos2x )$
$=1+\sqrt{5}+\sqrt{5}sin(2x-\varphi) $ với $\varphi \in[0,\frac{\pi}{2} ], sin \varphi=\frac{1}{\sqrt{5} } $
$\Rightarrow minf(x)=1+\sqrt{5}-\sqrt{5} =1$khi $\sin(2x-\varphi)=-1\Leftrightarrow
x=\frac{1}{2}(\varphi-\frac{\pi}{2})+k\pi, k\in Z$
Câu trắc nghiệm liên quan:
- Cho hàm số $y=\frac{x^{2}+2x+3}{x^{2}+2}$. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số.
- Tìm giá trị lớn nhất và nhỏ nhất của hàm số $y=\sqrt{1+\sin x}-3$
- Cho biểu thức $P$ = \(\cos A + \cos B + \cos C\). Trong đó $A, B, C$ là các góc của tam giác $ABC$ bất kì. Chứng minh rằng $P$ đạt giá trị lớn nhất nhưng không đạt giá trị nhỏ nhất.
- Trong các số thực $x, y, z$ thỏa mãn hệ thức \({\left( {x – 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 1} \right)^2} = 1\). Hãy tìm x, y, z để biểu thức \(|x + 2y + 3z – 8|\) đạt giá trị lớn nhất. Xác định giá trị đó.
- Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y=\frac{4x+3}{x^{2}+1}$.
- Tìm giá trị lớn nhất và nhỏ nhất của hàm số: $y=sin^{6}x+cos^{6}x+asinxcosx$
- Tìm giá trị lớn nhất và nhỏ nhất của hàm số \(y = \frac{{3{x^2} + 10x + 20}}{{{x^2} + 2x + 3}}\)
- Tìm giá trị lớn nhất của hàm số: $y=[\frac{12x(x-a)}{x^2+36}]^\frac{3}{4}$
- Xác định tham số $a,b$ sao cho hàm số $y=\frac{ax+b}{x^2+1}$ đạt giá trị lớn nhất bằng $4$, giá trị nhỏ nhất bằng $-1$