• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar

Bài Tập Toán Lý Hóa Sinh Tiếng Anh

Tập hợp bài tập môn Toán, Lý, Hóa, Sinh, Tiếng Anh, Sử, Địa, GDCD, Văn Phổ thông

  • Môn Toán
  • Môn Lý
  • Môn Hóa
  • Môn Sinh
  • Môn Anh
  • Môn Văn
  • Môn Sử
  • Môn Địa
  • Môn GDCD
  • Môn Công nghệ
  • Môn Tin học

Trong các số thực $x, y, z$ thỏa mãn hệ thức \({\left( {x – 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 1} \right)^2} = 1\). Hãy tìm x, y, z để biểu thức \(|x + 2y + 3z – 8|\) đạt giá trị lớn nhất. Xác định giá trị đó.

15/01/2020 by Baitap.net Để lại bình luận

Trong các số thực $x, y, z$ thỏa mãn hệ thức \({\left( {x – 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 1} \right)^2} = 1\). Hãy tìm x, y, z để biểu thức \(|x + 2y + 3z – 8|\) đạt giá trị lớn nhất. Xác định giá trị đó.

Bài giải chi tiết:

\(|x + 2y + 3z – 8|\)
\( = |\left( {x – 1} \right) + 2\left( {y – 2} \right) + 3\left( {z – 1} \right)| \le \sqrt {\left( {{1^2} + {2^2} + {3^2}} \right)\left[ {{{\left( {x – 1} \right)}^2} + {{\left( {y – 2} \right)}^2} + {{\left( {z – 1} \right)}^2}} \right]} \)
\( = \sqrt {14.1}  = \sqrt {14} \)  (BĐT Bunhiacopsky)

\(|x + 2y + 3z – 8|\) đạt giá trị lớn nhất \( = \sqrt {14} \)
   
Dấu bằng xảy ra\( \Leftrightarrow \left[ \begin{array}{l}
\frac{{x – 1}}{1} = \frac{{y – 2}}{2} = \frac{{z – 1}}{3} = \frac{{x + 2y + 3z – 8}}{{14}}\\
|x + 2y + 3z – 8| = \sqrt {14}
\end{array} \right.\)
                           \(\Leftrightarrow x = 1 \pm \frac{1}{{\sqrt {14} }};y = 2 \pm \frac{2}{{\sqrt {14} }};z = 1 \pm \frac{3}{{\sqrt {14} }}\)

Câu trắc nghiệm liên quan:

  1. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm sốa) $f(x)=x^2 \ln x$ trên đoạn $[1;e].$b) $f(x)=x e^{-x}$ trên nửa khoảng $[0;\infty ).$
  2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số:   $f(x)=-x^2+2x+4$ trên đoạn $[2;4]$.
  3. Trong các nghiệm $(x,y)$ của bất phương trình : $\log _{x^2+y^2}(x+y)\geq 1$.  Hãy tìm nghiệm có tổng $x+2y$ lớn nhất.
  4. Cho hàm số $y=\frac{x^{2}+2x+3}{x^{2}+2}$. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số.
  5. Cho $n$ số ${a_1},{a_2},…,{a_n}$với ${a_1} < {a_2} < ... < {a_n}$. Tìm giá trị nhỏ nhất của hàm số $f(x) = \sum\limits_{i = 1}^n {|{x - {a_i}}| } $
  6. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm sốa) $y=\frac{\ln^2 x}{x} $ trên đoạn $[1;e^3].$b) $y=x^2e^{-x}$ trên đoạn $[0; \ln 8].$
  7.   Cho $a,b,c,d$ là bốn số thực thỏa mãn các điều kiện:          $\begin{cases}a^2+b^2+6=4(a+b) \\ c^2+d^2+64=12(c+d) \end{cases}$ Tìm GTLN, GTNN của biểu thức: $S=(a-c)^2+(b-d)^2$
  8. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số :         $y=\frac{3\sin x}{2+\cos x}$.
  9. Cho \(x^{2}+y^{2}=2\) (\(x,y>0\)). Tìm giá trị lớn nhất của \((x+y)xy\).

Thuộc chủ đề:Hàm số Tag với:Giá trị lớn nhất - nhỏ nhất

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính




Baitap.net (c) 2019 - Bài Tập Toán Lý Hóa Sinh Anh -Giới thiệu - Liên hệ - Bản quyền - Sitemap - Bảo mật
Học Toán - Học Trắc nghiệm - Ebook Toán - Học Giải - Trắc nghiệm Toán - Giai bai tap hay