• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar

Bài Tập Toán Lý Hóa Sinh Tiếng Anh

Tập hợp bài tập môn Toán, Lý, Hóa, Sinh, Tiếng Anh, Sử, Địa, GDCD, Văn Phổ thông

  • Môn Toán
  • Môn Lý
  • Môn Hóa
  • Môn Sinh
  • Môn Anh
  • Môn Văn
  • Môn Sử
  • Môn Địa
  • Môn GDCD
  • Môn Công nghệ
  • Môn Tin học

Xét tính liên tục của hàm số sau trên toàn trục số:  $f(x) = \begin{cases}x^2+x  khi  x

10/01/2020 by Baitap.net Để lại bình luận

Xét tính liên tục của hàm số sau trên toàn trục số:  $f(x) = \begin{cases}x^2+x  khi  x

Bài giải chi tiết:

Hàm số xác định với mọi $ x \in  R$
1. Khi $x 2. Khi $x >1$, ta có : $f(x) =ax +1$ nên hàm số liên tục với $x >1$
3. Khi $x=1$, ta có :
      $ \mathop {\lim }\limits_{x \to 1^-}f(x) = \mathop {\lim }\limits_{x \to 1^-}(x^2+x)=2$
      $ \mathop {\lim }\limits_{x \to 1^+}f(x) = \mathop {\lim }\limits_{x \to 1^+}(ax+1) = a+1$.
      $ f(1) = a+1.$
Do đó:
* Nếu $a =1$ thì $\mathop {\lim }\limits_{x \to 1^-}f(x)= \mathop {\lim }\limits_{x \to 1^+}f(x) = f(1)=2$, do đó hàm số liên tục tại $x_0=1$
* Nếu $a \neq  1$ thì $\mathop {\lim }\limits_{x \to 0^+}f(x) \neq  \mathop {\lim }\limits_{x \to 0^-}f(x)$, do đó hàm số gián đoạn tại $x_0 =1$.
Kết luận :
– Nếu $a = 1$, hàm số liên tục trên toàn trục số
– Nếu $a \neq  1$, hàm số liên tục trên $(-\infty  ;1) \cup (1;+\infty)$ và gián đoạn tại $x_0=1$.

Câu trắc nghiệm liên quan:

  1. Chứng minh rằng phương trình:  $2x+6\sqrt[3]{1-x}=3$ có ba nghiệm phân biệt thuộc $(-7,9)$
  2. Chứng minh rằng các phương trình sau đây:1) \(x^{5}-3x-1=0\) có ít nhất 1 nghiệm  \(1
  3. Cho hàm số \(f(x)=\begin{cases}\frac{x^{3}-1}{x-1}, x\neq 1 \\ 3, x=1\end{cases}\). Chứng minh rằng \(f(x)\) liên tục tại \(x=1\).
  4. Chứng minh rằng phương trình:   $ 5x^4+40x^3+105x^2+100x+24 = 0 $ có bốn nghiệm âm phân biệt.
  5. Chứng minh: $f(x)=a.\cos4x+b.\cos3x+c.\cos2x+d.\cos x=0$ luôn có nghiệm $ \in ( {0;\pi })$
  6. Xét dấu hàm số: $f(x) = 2 + \cos x – 2 \tan \frac{x}{2} $ trên $ (0,\pi )$
  7. Cho $f,g$ liên tục trên $[a,b]$ và $g(x_{0})\neq 0,x_{0}\in [a,b]$Chứng minh rằng:Nếu: $\begin{cases} 0
  8. Cho $ a_1, a_2, …, a_n$ là các hằng số thực. Chứng minh rằng phương trình $a_1.\cos x + a_2 \cos 2x+…+ a_n.\cos nx = 0$ luôn có nghiệm trên $[0;2\pi ].$
  9. Tìm các khoảng và nửa khoảng ở đó hàm sau đây liên tục:$y=f(x)=\begin{cases}x^{2}+x+1         nếu  x

Thuộc chủ đề:Hàm số Tag với:Hàm số liên tục

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính




Bài viết mới

  • Với những giá trị nào của $y$ thì bất đẳng thức sau thỏa mãn $\forall x \in \,R\,$ :    ${x^2}\left( {2 – {{\log }_2}\frac{y}{{y + 1}}} \right) + 2x\left( {1 + {{\log }_2}\frac{y}{{y + 1}}} \right) – 2\left( {1 + {{\log }_2}\frac{y}{{y + 1}}} \right) > 0\,\,\,\,\,\,\,\,(1)$ 29/03/2020
  •     Tìm $m$ để bất phương trình sau có nghiệm:               $x^2-2mx+2|x-m|+4 29/03/2020
  • Tìm $m$ để hệ: a)$\begin{cases}\frac{7}{6}x-\frac{1}{2}>\frac{3x}{2}-\frac{13}{3}  \\ m^{2}x+1 \geq  m^{4}-x   \end{cases} $ có nghiệm                 b)$\begin{cases}x-2 \geq   0 \\ mx-4 \leq  0 \end{cases} $ có nghiệm là một đoạn có độ dài bằng $5$ 29/03/2020
  • Cho bất phương trình $\sqrt{-x^2+6x-5} \geq m-2x                 (1)$ a) Giải phương  trình khi $m=8$b) Tìm $m$ để bất phương trình $(1)$ nghiệm đúng với $\forall x \in [1;5]$ 29/03/2020
  • Tìm $m$ để hệ sau có nghiệm duy nhất: $\left\{ \begin{array}{l} x^2+(y+1)^2\leq  m   (1)\\ (x+1)^2+y^2\leq  m   (2) \end{array} \right. $ 28/03/2020

Baitap.net (c) 2021 - Bài Tập Toán Lý Hóa Sinh Anh -Giới thiệu - Liên hệ - Bản quyền - Sitemap - Bảo mật
Học Toán - Học Trắc nghiệm - Ebook Toán - Học Giải - Trắc nghiệm Toán - Giai bai tap hay - Lop 12